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Can we establish, in advance, that a 
useful theorem prover is sound?

Computer-checked proofs can be trusted
if

1. We guard against computer mistakes

2. We have confidence in the logic

3. We believe our program is sound
(it only accepts theorems)



3

Goal-directed proof search

Rewriter with many features
Assumptions system
Calculation of ground terms

Case splitting into subgoals

“Destructor elimination,” generalization, use of 
equalities

Induction

Has carried out large, complex proofs

The Milawa theorem prover
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To show Milawa is sound, we

1. Define provability for our logic

2. Model the theorem prover

3. Prove it only accepts theorems

Milawa finds the
 proof

“Self-verifying”

A simple program 
checks the proof

Avoids “I never lie”
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A challenge

Formal proofs are long. Soundness is hard.

Is a formal proof possible?

We separate the challenge of finding the proof 
from constructing it.

To manage proof size, we develop and verify a 
series of increasingly capable proof checkers.
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Road Map
1. The simple program
a. The Milawa logic

b. Level 1 proof checker

c. The command loop

d. Higher-level proof checkers

2. Self-verification
a. Building proofs

b. Verifying proof techniques

c. Planning the proof

d. Following the plan

3. Building the proof

a. Fully expansive Milawa

b. Higher-level proof checkers

c. Layering the proof

d. Checking the proof

4. Conclusions

a. Review of the proposal

b. Related work

c. Contributions
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1-a. The Milawa logic

Similar to the ACL2 logic

Objects

Naturals
Symbols

Ordered Pairs

12 Primitives

if, equal
natp, +, -, <

symbolp, symbol-<
consp, cons, car, cdr

+
+ Terminating,

recursive functions

+ Skolem functions

Objects

No type system, functions are total
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¬A∨A

A∨A
A

A∨(B∨C)
(A∨B)∨C

A∨B    ¬A∨C
B∨C

A
B∨A

Propositional 
Schema

Contraction

Expansion

Associativity

Cut

A
A/σ

Instantiation

Reflexivity Axiom
x = x

Equality Axiom
x

1
 = y

1
 → x

2
 = y

2
 → x

1
 = x

2
 → y

1
 = y

2

Referential Transparency
x

1
 = y

1
 → ... → x

n
 = y

n
 → f(x

1 
, ..., x

n 
) = f(y

1 
, ..., y

n 
)

Beta Reduction
((λ x

1
 ... x

n
 . β) t

1
 ... t

n
)

 
= β/[x

1
← t

1
, ..., x

n
← t

n
]

Base Evaluation
e.g., 1+2 = 3

52 Lisp Axioms
e.g., consp(cons(x, y)) = t

Induction

Rules of inference, axioms
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The logic as a programming language

Logical functions can be implemented in Lisp

Naturals
Symbols

Ordered Pairs

if, equal
natp, +, -, <

symbolp, symbol-<
consp, cons, car, cdr

Terminating,
recursive functions

Skolem functions

Lisp Integers (arbitrary precision)
Lisp Symbols
Lisp Conses

(defun MILAWA::car (x)
  (if (consp x) (car x) nil))

(defun skolem (…)
  (error “Called skolem function.”))

(defun f (…)
  (… (f …) …))
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1-b. The level 1 proof checker

Axioms

. . .  . . .        . . .
1 1 .  A v  B     . . .
1 2 .  ~A        . . .
1 3 .  B v  ~A    E x p a nd  1 2
1 4 .  ~B v  B    P r o p  Ax i o m
1 5 .  ~A v  B    Cu t  1 3 ,  1 4
1 6 .  B v  B     Cu t  1 1 ,  1 5
1 7 .  B         Co n t a c t  1 6
. . .  . . .        . . .

T or NIL

Alleged Proof

 is provable when 
∃p : Proofp(p) ∧ Conclusion(p) = 

Arity Table

Theorems

step-okp

Ensures each step is step-okp, where

prop-schema-okp

contraction-okp

expansion-okp

...

= OR

Proofp
Proof Predicate
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1-c. The command loop

step-okp prop-schema-okp

contraction-okp

...

= OR

Proofp

Axioms

Arity Table

Theorems

(DEFINE F …)
(SKOLEM F …)
(VERIFY   …)
(SWITCH …)
(FINISH …)

Command File System State

Proof Files

Lisp Environment   +

Command
Loop

(VERIFY  “file.proof”)

Proof establishes ?

Conclusion(      )  == 

Proof is valid?

T 

Then add  to Theorems
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Soundness theorem for New-Proofp

If:
P is a proof structure concluding , and
New-Proofp(P, axioms, thms, atbl) 

Then:
Provablep(, axioms, thms, atbl)

(SWITCH New-Proofp)

1-d. Higher-level proof checkers
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Road Map
1. The simple program
a. The Milawa logic

b. Level 1 proof checker

c. The command loop

d. Higher-level proof checkers

2. Self-verification
a. Building proofs

b. Verifying proof techniques

c. Planning the proof

d. Following the plan

3. Building the proof

a. Fully expansive Milawa

b. Higher-level proof checkers

c. Layering the proof

d. Checking the proof

4. Conclusions

a. Review of the proposal

b. Related work

c. Contributions
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2-a. Building proofs

Method

Conclusion

Extras

Subproofs

Proof representation A
B∨A

Expansion

Expansion

B∨A
nil

...

A
...

...
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Primitive proof builders

¬A∨APropositional Schema

build.propositional-schema(A) =

Prop Schema
¬A∨A

nil
nil

A∨B    ¬A∨C
B∨C

Cut

build.cut(                ,                 )  = 
...

A∨B
...
...

...
¬A∨C

...

...

Cut
B∨C

nil
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Non-primitive builders

build.commute-or(                ) =
...

A∨B
...
...

build.commute-or(x) = 
   Let a = lhs(conclusion(x))
   build.cut(x, build.propositional-schema(a))
                   

Commute Or
  1.  A∨B Given
  2. ¬A∨A Propositional Schema
  3. B ∨ A Cut 1, 2

Cut
B∨A

nil

Prop Schema
¬A∨A

nil
nil



17

The Three Theorems

Given suitable inputs, we prove each builder is

Well Typed: it builds a proof structure

Relevant: the proof has the desired conclusion

Sound: the proof is accepted by Proofp

These compose and allow us to 
treat builders as black boxes
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2-b. Verifying proof techniques

Ground Term
Evaluatorx

x

x'
Soundness claim

x = x' is provable

Introduce a fully-expansive version
Establish it is well-typed, relevant, and sound

Proofp T
Proof of
x = x'

Introduce the technique

Many similarities to LCF systems

Evaluation 
Builder
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2-c. Planning the proof

(DEFUN ...)
(DEFUN ...)
(DEFTHM ...)
(DEFUN ...)
(DEFTHM ...)
(DEFTHM ...)
(DEFUN ...)
(DEFTHM ...)
(DEFTHM ...)
(DEFTHM ...)
...

A long sequence of events
2,700 definitions
11,600 theorems

Basic utilities (lists, arith, …)
Logical concepts
Builder library
Clauses, clause splitting
Rewriting
Tactic system

We develop a plan of the proof in ACL2
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2-d. Following the plan

Q.E.D.
ACL2 

Milawa

(DEFUN ...)
(DEFUN ...)
(DEFTHM ...)

(DEFTHM ...) 

(DEFUN ...)
(DEFTHM ...)
(DEFTHM ...)
(DEFTHM ...)
... Milawa Hints

ACL2 Hints

Q.E.D.
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Road Map
1. The simple program
a. The Milawa logic

b. Level 1 proof checker

c. The command loop

d. Higher-level proof checkers

2. Self-verification
a. Building proofs

b. Verifying proof techniques

c. Planning the proof

d. Following the plan

3. Building the proof

a. Fully expansive Milawa

b. Higher-level proof checkers

c. Layering the proof

d. Checking the proof

4. Conclusions

a. Review of the proposal

b. Related work

c. Contributions
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3-a. Fully expansive Milawa

Recall how we verified our proof techniques 

Easy to develop a fully expansive 
version of Milawa

Ground Term
Evaluatorx x'

x Proofp T
Proof of
x = x'

Evaluation 
Builder
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Q.E.D.

Milawa

Fully Expansive Milawa

(DEFUN ...)
(DEFUN ...)
(DEFTHM ...)

(DEFTHM ...) 

(DEFUN ...)
(DEFTHM ...)
(DEFTHM ...)
(DEFTHM ...)
...

Milawa Hints
Proof
Object

A strategy for formalizing the proof
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3-b. Higher-level proof checkers

Axioms

. . .  . . .        . . .
1 1 .  A v  B     . . .
1 2 .  ~A        . . .
1 3 .  B v  ~A    E x p a nd  1 2
1 4 .  ~B v  B    P r o p  Ax i o m
1 5 .  ~A v  B    Cu t  1 3 ,  1 4
1 6 .  B v  B     Cu t  1 1 ,  1 5
1 7 .  B         Co n t a c t  1 6
. . .  . . .        . . .

Alleged Proof

Arity Table

Theorems

step-okp

Ensures each step is step-okp, where

prop-schema-okp

contraction-okp

expansion-okp

...

= OR

Proofp
Proof Predicate

T or NIL

Accepts only primitive rules
Good for trust, bad for proof size
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Level2.step-okp

Ensures each step is Level2.step-okp, where

Level1.step-okp

= OR

Level2.Proofp

commute-or-okp

modus-ponens-okp

...

New Rules Old Rules

Writing new proof checkers
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If:
P is a proof structure concluding , and
New-Proofp(P, axioms, thms, atbl) 

Then:
Provablep(, axioms, thms, atbl)

Verifying higher-level proof checkers

Our simple program can't use the new proof checker 
until we prove it is sound

But now this is easy! (next slide)



27

...
A∨B

...

...

Proving the soundness theorem

...
A∨B

...

...

Commute Or
B∨A

nil

Level 2 Proof

Show how to compile any high-level step into 
a Level 1 proof

Inductive
Construction

Level 1 Proof
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...
A∨B

...

...

Proving the soundness theorem

...
A∨B

...

...

Cut
B∨A

nil

Prop Schema
¬A∨A

nil
nil

Commute Or
B∨A

nil build.commute-or(   ) =

Level 2 Proof Level 1 Proof

Show how to compile any high-level step into 
a Level 1 proof

Inductive
Construction
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Emitting high-level proofs

...
A∨B

...

...

Cut
B∨A

nil

Prop Schema
¬A∨A

nil
nil

build.commute-or build.commute-or-high

...
A∨B
...
...

Commute Or
B∨A

nil

Fully Expansive Milawa

Level 1
Proof

Level 2
Proof
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Level 1 The Primitives
Level 2 Propositional reasoning
Level 3 Rules about primitive functions 
Level 4 Miscellaneous groundwork
Level 5 Assms. traces, updating clauses
Level 6 Factoring, splitting help
Level 7 Case splitting
Level 8 Rewriting traces
Level 9 Unconditional rewriting
Level 10 Conditional rewriting
Level 11 All tactics

3-c. Layering the proof
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Effects of layering

A “hard” lemma toward level 3

A “moderate” lemma toward level 8
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3-d. Final checking of the proof

The proof files total 9 GB, uncompressed

We successfully checked all proofs on these 
machines, using Clozure Common Lisp

Jordan My home computer Intel Core 2 Duo 13.8 hrs
Cele Apple MacBook Intel Core 2 Duo 19.8 hrs
Lhug-3 HP server AMD Opteron 31.2 hrs

Many proofs were also checked on these, and 
other machines, with different lisps
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Road Map
1. The simple program
a. The Milawa logic

b. Level 1 proof checker

c. The command loop

d. Higher-level proof checkers

2. Self-verification
a. Building proofs

b. Verifying proof techniques

c. Planning the proof

d. Following the plan

3. Building the proof

a. Fully expansive Milawa

b. Higher-level proof checkers

c. Layering the proof

d. Checking the proof

4. Conclusions

a. Review of the proposal

b. Related work

c. Contributions
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The proposal describes
The logic and proof checker
The approach to building proofs
The introduction and verification of extended proof checkers
The verification of Level 2 proof checker (with one rule)

I proposed to
Explain why the logic is reasonable and why the simple
program is sound. (See Chapters 2-4)

Use this approach to verify a theorem prover that
implements clausification (case splitting), evaluation,
equality reasoning, conditional rewriting, destructor
elimination. (See Chapters 5-12)

4-a. Review of the proposal
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4-b. Related work

Other ways to develop theorem provers
Boyer-Moore theorem provers
LCF-style theorem provers
Constructive type theory provers

Embedding proof checkers in a logic
Gödel's proof, Shankar's formalization

Mechanically verifying proof checkers
Harrison (HOL Light's core), von Wright (imperative proof checker)

Independently checking proofs
McCune/Shumsky (Ivy), Obua/Skalberg (HOL to Isabelle/HOL)

Meta-reasoning in other systems
Metafunctions, reducibly equal terms in Coq, ...
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4-c. Contributions

A new approach to developing trustworthy 
theorem provers

Does not require fully expansive proofs

Demonstrates how Boyer-Moore theorem
provers may be verified

Verified many theorem proving algorithms 

Applications in other theorem provers with meta-
reasoning capabilities
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Additional contributions

A flexible proof representation

Many kinds of objects are treated as proofs 
(rewrite traces, equivalence traces, proof skeletons)

An extensible proof representation

Verifying new kinds of proof steps can improve
efficiency of proof construction and checking

Potential target for other systems
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Thanks!


