
Journal of Automated Reasoning — June 2015
Author’s Pre-Print Version. Official version: doi:10.1007/s10817-015-9324-6

The reflective Milawa theorem prover is sound
(down to the machine code that runs it)

Jared Davis · Magnus O. Myreen

Received 14 November 2014 / Accepted 3 March 2015 / Published June 2015

Abstract This paper presents, we believe, the most comprehensive evidence of a
theorem prover’s soundness to date. Our subject is the Milawa theorem prover.
We present evidence of its soundness down to the machine code.

Milawa is a theorem prover styled after NQTHM and ACL2. It is based on an
idealised version of ACL2’s computational logic and provides the user with high-
level tactics similar to ACL2’s. In contrast to NQTHM and ACL2, Milawa has a
small kernel that is somewhat like an LCF-style system.

We explain how the Milawa theorem prover is constructed as a sequence of
reflective extensions from its kernel. The kernel establishes the soundness of these
extensions during Milawa’s bootstrapping process.

Going deeper, we explain how we have shown that the Milawa kernel is sound
using the HOL4 theorem prover. In HOL4, we have formalized its logic, proved
the logic sound, and proved that the source code for the Milawa kernel (1,700 lines
of Lisp) faithfully implements this logic.

Going even further, we have combined these results with the x86 machine-
code level verification of the Lisp runtime Jitawa. Our top-level theorem states
that Milawa can never claim to prove anything that is false when it is run on this
Lisp runtime.

Dedicated to John McCarthy (1927–2011)

The second author was partially supported by
the Royal Society UK and the Swedish Research Council.

Jared Davis
Centaur Technology, Inc., Austin TX, USA

Magnus O. Myreen
CSE Department, Chalmers University of Technology, Sweden
Computer Laboratory, University of Cambridge, UK

http://dx.doi.org/10.1007/s10817-015-9324-6

2 Jared Davis, Magnus O. Myreen

1 Introduction

The introduction to Hoare’s seminal An Axiomatic Basis for Computer Program-

ming [1] begins as follows:

“ Computer programming is an exact science in that all the properties of a
program and all the consequences of executing it in any given environment
can, in principle, be found out from the text of the program itself by means
of purely deductive reasoning. ”

This inspiring statement is, of course, not entirely true. Computer programs are
run on electronic hardware. To truly understand the consequences of executing
programs on these machines we would need theories from physics, an inexact sci-
ence. Nevertheless, Hoare’s view is still valuable as it splits the problem of trusting
a program into two separate parts: the inexact question of whether the physical
machine properly implements its instruction set, and the exact question of whether
the program would, were it to be correctly executed, carry out the desired com-
putation.

In this paper, we explain how we have taken the exact question to the extreme
for an interactive theorem prover. Theorem provers are used to verify critical hard-
ware and software systems, so their trustworthiness is a concern. Some popular ex-
amples of theorem provers are ACL2 [2], Coq [3], HOL4 [4], and Isabelle/HOL [5].

Our work targets the Milawa [6] theorem prover. Milawa is styled after Boyer-
Moore systems like NQTHM [7] and ACL2, but unlike these programs it has a
small logical kernel, somewhat like an LCF-style [8] system. Notably, its kernel
includes a mechanism for performing reflection, an operation that modifies the
kernel. Using this mechanism, Milawa’s high-level tactics (like term rewriting) are
proven sound and added into the kernel.

What would it mean for a theorem prover to be trustworthy? Roughly, we
would like to know that the program will never claim to prove anything that isn’t
true. Any theorem prover is meant to mechanise reasoning in some particular
mathematical logic; it is written in a programming language like ML, OCaml, or
Lisp, and is executed by a runtime system like Poly/ML, the OCaml system, or
Clozure Common Lisp. Accordingly, we should like to establish that:

A. the logic is sound and consistent,
B. the theorem prover’s source code is faithful to its logic, and
C. the runtime executes the source code correctly.

We have used the HOL4 theorem prover to prove these properties about the
Milawa theorem prover. We believe this work is the most comprehensive evidence of
a theorem prover’s soundness to date. This isn’t to say you shouldn’t trust other
theorem provers—far from it! Many theorem provers are based on well-studied
logics, effectively settling A, and LCF-style systems can make strong claims toward
B. In fact, Harrison [9] has even mechanically proved A and a simplified B for HOL
Light. (We discuss these and other approaches to developing trustworthy theorem
provers in Section 2.) But our work is the first to also address property C, and
really C is quite hard: how can we establish that a runtime for a language like
ML or Lisp will properly execute programs? These runtime systems typically have
many megabytes of source code and deeply depend on the operating system, C
libraries, and so forth.

The reflective Milawa theorem prover is sound 3

To avoid this complexity, we have developed our own Lisp runtime, Jitawa [10],
for the explicit purpose of running Milawa. Jitawa features a just-in-time compiler
down to x86-64 machine code, a copying garbage collector, efficient parsing, and
support for large memory spaces. It is designed for minimal interaction with the
operating system. It consists of 8,200 lines of HOL4-verified machine code, and
a 200-line unverified C wrapper program that allocates memory before handing
control to the verified code.

Our proofs of properties A through C are the key lemmas in a single, top-level
HOL4 theorem: the kernel of the Milawa theorem prover, when run on our verified
Lisp runtime Jitawa, will only ever prove statements that are true with respect to
the semantics of Milawa’s logic. This theorem means, for instance, that no matter
how reflection or any other operation is used, the statement ‘true equals false’ can
never be proved. It relates the semantics of the logic (not just syntactic provability)
all the way down to the concrete x86 machine code.

2 Current Approaches to Developing Trustworthy Provers

How can we develop reliable theorem provers? The approach we describe in this
paper is to develop evidence, in the form of mechanically proved theorems, that
indicates the theorem prover is sound. But there are many other techniques for
making theorem provers trustworthy.

Property A, logical soundness, is perhaps the easiest part of the problem. Some
theorem provers are based on well-known logics whose soundness is widely ac-
cepted, for instance first- or higher-order logic or ZF set theory. Soundness proofs
are usually routine and are often short enough to write down and validate like or-
dinary mathematical proofs. Some soundness proofs have even been mechanically
checked [11] by theorem provers.

Meanwhile, property B, the faithfulness of the prover’s source code to its logic,
is really not any different from any other software verification problem. That is,
we may as well ask: how can we make sure that a compiler builds executables that
implement their source code? Or, how can we be sure that an operating system
will stop applications from tampering with each others’ memory?

Well, there are plenty of informal ways to make programs more reliable. We
can use languages with features that prevent certain kinds of bugs (strong type
systems, garbage collection, arbitrary-precision arithmetic, etc.). We can write
documentation, develop test suites, conduct code reviews, and apply static check-
ing tools like linters. None of this will guarantee that the program is correct, but
we can certainly have more confidence in a well-reviewed, well-tested program.

For theorem provers like ACL2 and PVS, and also for many reasoning tools
like SAT solvers and SMT solvers, these informal approaches are the main ways
of pursuing correctness. Usually these tools are pretty reliable, but sometimes [12,
13,6,14,15] they have soundness bugs—bugs that can allow them to claim to have
proven formulas that are not theorems.

Pragmatically, this is not so bad. Theorem provers have to cope with large
problems like proofs about hardware and software. To make this feasible, a lot
of work goes into making it easy to develop formal models and into making the
reasoning algorithms powerful, efficient, and easy to use. With this in mind, we
probably shouldn’t obsess over correctness. If we are careful to review and test

4 Jared Davis, Magnus O. Myreen

our code then most problems will be found, and even if our program has a few
esoteric bugs it will probably still be a significantly more reliable than human
proof checking, which is ill-suited to the very long and detailed proofs that arise
in, e.g., hardware verification.

This pragmatic view has many merits. But, of course, it would be nice to have
a better story about why our theorem provers can be trusted. Fortunately, there
are other ways to write theorem provers that can give us such a story.

One approach is to program the theorem prover’s algorithms in such a way that
they can justify their claims, and then to separately check that all of the steps
in these justifications are valid. This reduces the question of trusting the theorem
prover (a large program) to trusting the checking mechanism (a small one); if the
theorem prover has a bug and tries to make some invalid inference, the checking
program will fail to accept the justification, revealing the bug. When a theorem
prover can produce output that a simple program can check, it is said to satisfy
the de Bruijn criteria. [16]

Today, many reasoning tools, including SAT solvers [17], QBF solvers [18],
SMT solvers [19], and resolution provers [20], can emit proof objects for other
programs to check. A great feature of this approach is that since the reliability of
the solving program does not really matter, we can freely use tools that are efficient
but possibly unreliable. For instance, our solver could be a giant multithreaded C
program with inline assembly that interfaces with GPUs and runs on a cluster.
None of this poses a problem if the checking program is simple. In some cases, work
has even gone into demonstrating the correctness of the checking programs. [20,
21,22,23]

For general-purpose, interactive theorem provers, there is an elegant way to
embed the proof-checking system into the theorem prover itself, so that a separate
program is not needed. This approach was pioneered by the LCF [8] system and
today is used by HOL family of provers (HOL4, HOL Light, Isabelle, etc.). The
idea is to encode the rules of inference for the logic as the only constructors for
an abstract datatype, thm. The type system of the programming language should
not allow thm objects to be built except by these constructors. This way, we can
be sure any thm has been constructed by following the rules of inference.

The theorem prover with the best soundness story is HOL Light [9]. It is a
pure LCF system, meaning that its thm type is very simple and does not provide
unnecessary constructors, even though additional constructors could make it more
efficient. Its kernel is especially small (about 400 lines of Objective Caml) and
Harrison has modeled this core and mechanically proved [11] soundness properties
about it.

It is worth noting that these LCF-style systems can be easily extended with
logging mechanisms so the steps they have taken can be checked by other the-
orem provers. Using these mechanisms, it is possible to use HOL, HOL Light,
and Isabelle/HOL to double check each others work, e.g., using the OpenThe-
ory [24] framework.1 However, these techniques currently struggle to scale to large
proofs—proofs on the order of tens of thousands of lines of proof script.

All of these approaches leave open the question of Property C, whether the
theorem proving program will be executed correctly. Virtually all interactive the-

1 Isabelle/HOL has a slightly more expressive logic than the other HOL provers and, as a
result, it can import proofs but not always export to the other provers.

The reflective Milawa theorem prover is sound 5

orem provers are implemented in functional programming languages. They rely
heavily on the correctness of the abstraction layers provided by these languages
and their implementations (called runtimes). In practice, these runtimes are simply
just assumed to do the right thing, even though their implementations are often
significantly more complex than the soundness-critical code in theorem provers!
For a rough perspective, source-code distributions of Objective Caml and Com-
mon Lisp systems seem to range from 15 MB to 50 MB on disk, and also need C
compilers and various libraries. In contrast, LCF-style provers have at most a few
thousand lines of soundness-critical code.

3 Our Approach — The Milawa Stack

We begin this paper with a brief introduction to the Milawa theorem prover (Sec-
tion 4) which gives a flavor for how the system can be used to define new functions
and prove theorems about them. Beyond this introduction, the rest of this paper
is the story of why you should trust the Milawa theorem prover. The unusual part
of our story is that we have mechanically proved theorems suggesting that Milawa
is trustworthy. Our theorems start with the semantics of the logic and reach down
to a detailed model of a subset of the 64-bit x86 instruction set architecture.

Here is a rough picture of the structure of the Milawa theorem prover and our
evidence to suggest that it is sound.

 Jitawa runtime — 8,200 lines of x86

 Milawa's kernel — 1,700 lines of Jitawa Lisp

 Level 2 prover — Propositional Rules

 Level 3 prover — Basic Functions

 Level 10 prover — Conditional Rewrites

 Level 11 prover — Tactics

model of subset of x86 instruction-set architecture

specification of impure Jitawa Lisp language

formalisation of Milawa's logic

...

so
un

dn
es

s
pr

ov
ed

 in
 H

O
L4

so
un

dn
es

s
pr

ov
ed

 d
ur

in
g

bo
ot

st
ra

pp
in

g

...

The Milawa user interface

Milawa’s kernel sits at the centre of the stack. Extensions to the kernel (the
Level 2-11 provers) sit on top of the kernel and below it lies our Lisp runtime,
Jitawa. Note that Milawa’s user interface is not part of our soundness story.

Our soundness story has two phases. The components above the kernel are in-
stalled during a bootstrapping phase. When the Milawa theorem prover is started,
it runs through a bootstrapping sequence that replaces the initial kernel’s proof

6 Jared Davis, Magnus O. Myreen

checker with more powerful checkers that add support for new operations (like
rewriting). Each time the kernel is extended, the kernel’s previous proof checker
ensures the soundness of the new one before admitting it. When we write ‘the
Milawa theorem prover’ we mean the result of running through this boostrap-
ping process—that is, a program that can directly use high-level proof steps. We
describe the kernel and this bootstrapping process in Sections 5 and 6.

The kernel itself and the components below it are verified in a separate im-

plementation phase. For our story of trust, we assume that the Milawa theorem
prover is run on top of our verified Lisp implementation called Jitawa (Section 7).
As evidence of soundness, we have proved, using the HOL4 theorem prover, that
(A) Milawa’s logic is sound, (B) Milawa’s kernel is faithful to the logic and (C)
Jitawa executes Milawa’s kernel correctly. We cover this work in Sections 8–13.

4 The User Interface

Before diving into our soundness story, we would like to begin by painting a picture
of how the Milawa theorem prover is actually used. The human finds proofs with
the help of a user interface (UI). In this section, we show how you could use this
interface to define a simple list membership function (Section 4.2) and prove a
basic theorem about it (Section 4.3). Using Milawa is so similar to using ACL2
that we also include a brief comparison between the two systems (Section 4.4).

To some degree, Milawa’s interface mimics its kernel (which we will cover
in Section 5). For instance, it records the functions you have defined and the
theorems you have proven, prints messages saying it has accepted proofs, etc. But
the interface is not part of our verified stack. In fact, for your convenience it is
entirely unsound: you can skip proofs at any time, add arbitrary axioms, and so
on. After you have used the interface to complete your proof, it can construct
proof objects and save them into files that can be checked with the verified stack.

4.1 The Logic as a Programming Language

Milawa implements a computational logic of untyped recursive functions. By com-

putational, we mean that functions in the logic can also be thought of as programs
in a pure Lisp dialect.

The Milawa logic has three kinds of objects. The only numbers are the naturals,
i.e., 0, 1, 2, etc. Next we have symbols like len, app, * and x, which you can just
think of as character strings. Together the naturals and symbols are called the
atoms. Finally, we have conses, which are ordered pairs of objects. Every object is
finite, i.e., there are no “circular” cons structures.

The symbol nil is special. It represents the empty list. It is also the only
object that is regarded as false in Boolean contexts like if tests. Any other object
is treated as true, but the symbol t is often used as the “canonical” true value.
(This is similar to truth values in C programs, where 0 is considered false, other
numbers are treated as true, and 1 is often used as the canonical true value.)

We write terms in the logic using a typical S-expression syntax derived from
Lisp. We use symbols other than t and nil as variables. We write constants using
the usual quotation mechanism from Lisp: this lets us refer to any Milawa object

The reflective Milawa theorem prover is sound 7

as a constant literal by putting a quotation mark before it. For instance, while
foo is a variable, ’foo is a constant literal whose value, in any environment, is
the symbol foo. Since there is no confusion between variables and numbers, we
typically omit the quote and write, e.g., ’3 simply as 3; similarly we may omit
the quote for t and nil. We write the cons of a and b as (a . b), and adopt the
Lisp conventions for abbreviating lists, e.g., (a b c) means (a . (b . (c . nil))).
This way of writing conses works with quotation, so for instance ’(foo . bar) is
a constant whose value is the cons of the symbols foo and bar. Finally, we write
function applications in a Lisp-like infix syntax, i.e., we write (f a b) instead of
the more conventional f (a, b).

The logic has a dozen primitive functions. Two key functions are:

(equal x y) check whether x = y

(if x y z) if x is true (non-nil) then y, else z

For working with conses we have:

(consp x) check whether x is a cons
(cons x y) construct the ordered pair (x . y)

(car x) first component of an ordered pair
(cdr x) second component of an ordered pair

For working with natural numbers, we have:

(natp x) check whether x is a natural
(< x y) check whether x is less than y

(+ x y) add x and y

(- x y) subtract y from x, or 0 when y ≥ x

Finally, for working with symbols, we have:

(symbolp x) check whether x is a symbol
(symbol-< x y) lexicographic ordering on symbols

An unusual feature of these primitives is that they are well-defined for all inputs,
even inputs that might seem like they are ill-typed. For instance, the arithmetic
functions <, +, and - treat non-numeric inputs as zero, so weird terms like (+ ’foo

’(a . b)) are allowed. Similarly, symbol-< treats non-symbols as nil, and car and
cdr return nil when given atoms.

Aside from these primitives and a few macros for more concisely writing certain
terms, everything else is defined. Usually we define recursive functions like in,
below. We can also define witness functions to emulate quantifiers. We won’t use
witness functions in this introduction, but we will describe them more thoroughly
in Section 5.4. We use the word “recursive” even when a function does not call
itself, to distinguish between these “conventional” functions and witness functions.

4.2 Example: Defining a list-membership function

The Milawa user interface is a command-line program. When we invoke it, we are
presented with a prompt:

8 Jared Davis, Magnus O. Myreen

MILAWA !>

Here we can type in commands to define functions, propose theorems, etc. Let’s
start by defining a list-membership function. Aside from the :measure part, this
looks like a standard definition in Lisp or Scheme.

MILAWA !> (%defun in (a x)

(if (consp x)

(or (equal a (car x))

(in a (cdr x)))

nil)

:measure (len x))

Before a recursive function’s definition can be accepted, we must prove that
it always terminates for any possible input. This restriction lets us avoid certain
logical problems that can arise from non-terminating functions. For example, a the-
orem in Milawa is that a 6= (+ 1 a) for any a. If we could define a non-terminating
function like (f x) = (+ 1 (f x)), then from its definition we could derive, for
instance, (f 0) = (+ 1 (f 0)), contradicting our theorem.

When we propose a function definition with %defun, we specify a measure term
that should be used for the termination proof. We are obliged to prove that (1)
the measure always produces an ordinal, and (2) this measure decreases with each
recursive call. Milawa’s ordinals go up to ε0, enough to admit many functions.

For the definition of in, we gave the measure (len x). The len function is
built into Milawa and it just computes the length of a list. Since there is only one
recursive call in in, there are two goals to prove when we submit its definition:

Two goals remain.

1. (EQUAL (ORDP (LEN X)) ’T)

2. (IF (EQUAL (ORD< (LEN (CDR X)) (LEN X)) ’T)

’T

(IF (EQUAL (CONSP X) ’NIL)

’T

(EQUAL (NOT (EQUAL A (CAR X))) ’NIL)))

What is going on here? The ordp function checks whether its argument is a
well-formed ordinal, so the first goal is to prove that the measure, (len x), always
produces an ordinal. Meanwhile, ord< is the less-than comparison for ordinal num-
bers. The second goal is hard to read because of the ugly if expressions, but boils
down to showing that (len (cdr x)) is smaller than (len x) when in recurs.

We can prove these goals by calling upon Milawa’s tactics. There are many
different tactics we can use. The %split tactic is good at cleaning up if expressions,
and gives us a more readable second goal:

MILAWA !>(%split)

; Splitting clause 2.

; Splitting clause 1.

Two goals remain.

1. (EQUAL (ORDP (LEN X)) ’T)

The reflective Milawa theorem prover is sound 9

2. (IMPLIES (AND (NOT (EQUAL A (CAR X)))

(CONSP X))

(EQUAL (ORD< (LEN (CDR X)) (LEN X)) ’T))

To prove these simplified goals, we can use a powerful tactic called %crewrite.
This tactic uses a rewriter that makes and tracks assumptions, applies conditional
rewrite rules, and evaluates ground terms. Milawa has thousands of rewrite rules
about its built-in functions, and some of these rules are about ordp, ord< and len.
Rules are organized into groups called theories; the usual theory is named default.

MILAWA !>(%crewrite default)

; Rewrote clause #2 in 0.001999 seconds (proved), [...]

; Rewrote clause #1 in 0.038994 seconds (proved), [...]

; Rewrote 2 clauses; 0 (+ 0 forced) remain.

All goals have been proven.

Rewriting with user-supplied rules is the main engine in Boyer-Moore style
theorem provers like NQTHM, ACL2, and Milawa. When rewriting doesn’t prove
a goal outright, it often simplifies terms to leave us with a new goal that is easier to
prove. It is often possible to prove the new goal by first augmenting the rewriter
with additional rules. When Kaufmann, et al. wrote the main textbook about
ACL2 [2], they named this approach The Method.

With the termination obligations out of the way, we can %admit the definition
of in. When we do this, the UI can compile, check, and save Milawa proof objects
for its termination obligations. It also adds the definition of in as an axiom so
that we can start proving theorems about in:

MILAWA !>(%admit)

; Compiling worlds for IN...

; Compiling proofs for IN... [...]

;; Preparing to admit IN.

;; Proof sizes total: 3,409,472 conses [...]

; Checking the proofs... [...]

; Proof-checking completed.

;; Proofs accepted. Saving as user/admit-in.proofs [...]

New rule: IN

To save time, we usually skip the proof building steps when we are initially devel-
oping proofs. But after our proof development is complete, we save the proofs into
files and assemble them into an input that can be checked with the verified stack.

4.3 Example: Proving a theorem about in

Let’s try to prove a simple theorem: no object is ever in itself. Intuitively, this
is true because for a list to contain an element it must be “bigger” than that
element. To make this argument precise, we use Milawa’s built-in rank function,
which counts the conses in an object:

(rank x) = (if (consp x)

(+ 1 (+ (rank (car x))

(rank (cdr x))))

0)

10 Jared Davis, Magnus O. Myreen

We start by proving a lemma toward our goal. Note that all variables in a
Milawa theorem are implicitly universally quantified, so this lemma says: whenever
any element a is in any list x, x is strictly larger than a in the sense of rank.

MILAWA !>(%defthm rank-when-in

(implies (in a x)

(< (rank a) (rank x))))

One goal remains.

1. (IMPLIES (AND (IN A X))

(IFF (< (RANK A) (RANK X)) ’T))

To prove this lemma, we will induct according to %cdr-induction, an induction
scheme that might normally be called structural induction on lists. To avoid too
much detail, we follow up our induction scheme with a call of the %auto tactic,
which applies a sequence of clause splitting, rewriting, and destructor elimination
to simplify goals until no further progress is made. This leads us to the base case
and inductive case that you might expect:

MILAWA !>(%cdr-induction x)

[... produces five subgoals ...]

MILAWA !>(%auto)

[... various progress messages ...]

Two goals remain.

1. (IMPLIES (AND (NOT (CONSP X)))

(NOT (IN A X)))

2. (IMPLIES (AND (IN A (CONS X1 X2))

(NOT (< (RANK A)

(+ ’1 (+ (RANK X1) (RANK X2))))))

(IN A X2))

Each goal suggests a rewrite rule. We could solve the base case (1) by rewriting
(in a x) to nil since x is not a cons. For the inductive case (2) we could rewrite
(in a (cons x1 x2)) to (or (equal a x1) (in a x2)), and the goal would follow
by arithmetic.

We undo the current proof attempt, prove these rules, and try again. With the
new rules in place, induction and %auto are enough to prove the theorem. We then
tell the system to save the proof with %qed. As before, the interface constructs a
proof object, checks it, saves it into a file, and adds the new rule.

MILAWA !>(%qed)

; Compiling worlds for RANK-WHEN-IN... [...]

; Preparing to check RANK-WHEN-IN.

;; Proof size: 4,712,680 conses.

; Checking the proof. [...]

;; Proof accepted. Saving as user/thm-rank-when-in.proof

New rule: RANK-WHEN-IN

With our lemma established, we are ready to prove our goal:

The reflective Milawa theorem prover is sound 11

MILAWA !>(%defthm not-in-self

(not (in a a)))

One goal remains.

1. (EQUAL (IN A A) ’NIL)

To prove this, we need to instantiate our lemma with {x← a}:

MILAWA !>(%use (%instance (%thm rank-when-in) (x a)))

[... one goal with messy ifs ...]

MILAWA !>(%split) ;; to clean it up

One goal remains.

1. (IMPLIES (AND (IFF (< (RANK A) (RANK A)) ’T))

(NOT (IN A A)))

This is true because the hypothesis is false: it is never the case that (< a a).
Tactics like %crewrite or %auto will notice this and prove the goal:

MILAWA !>(%crewrite default)

; Rewrote clause #1 in 0.001 seconds (proved), [...]

; Rewrote 1 clauses; 0 (+ 0 forced) remain.

All goals have been proven.

MILAWA !>(%qed)

; Compiling worlds for NOT-IN-SELF... [...]

;; Proof accepted. Saving as user/thm-not-in-self.proof

New rule: NOT-IN-SELF

4.4 Comparison with ACL2

With a few changes these examples could have been about ACL2. Milawa is essen-
tially a simplified reimplementation of ACL2. The two are quite similar in terms of
their logics, the style of interaction, and the general approach to proving theorems
by building up libraries of rewrite rules. Here are some specific differences:

– The ACL2 logic [2] has some objects that are not in Milawa, like characters,
strings, and numbers besides the naturals. However, it would be straightfor-
ward to encode all “good” ACL2 objects as Milawa objects. ACL2 also has
encapsulate [25] and functional instantiation, which aren’t in Milawa.

– The ACL2 system has a much richer connection to its Lisp runtime than Mi-
lawa. ACL2 functions can interact with files [26], use arrays, and use type
declarations [27] to avoid runtime type checks and bignum arithmetic. With ex-
perimental extensions, ACL2 functions can use parallelism [28] or hash-consing
and memoization [29]. Milawa only has pure functions.

– Milawa does not reimplement parts of ACL2’s reasoning engine such as its
type-set and forward-chaining algorithms. ACL2’s rewriter is also more effi-
cient, has an integrated arithmetic procedure [30], and supports meta rules [31]
and generalized equivalences [32]. ACL2 also has features such as trusted clause
processors [33] that allow it to trust external tools like SAT solvers.

12 Jared Davis, Magnus O. Myreen

– ACL2 has richer symbols and user-defined macros. Milawa has only a small set
of built-in macros: first, . . . , fifth, and, or, list, let, let*, and cond.

With all of this missing, it is worth noting that Milawa does reimplement
much of ACL2. Its rewriter [6] makes assumptions, canonicalizes equal and iff-
equivalent terms, mimicks ACL2’s ancestors check for avoiding rewriting loops,
handles rules with free variables and syntactic restrictions [31], and can forcibly
assume hypotheses. It has tactics for destructor elimination, generalization, and
fertilization. Its %waterfall tactic does depth-first rewriting and case-splitting. Its
verified tactics are largely similar to verified clause processors [33] in ACL2.

Another difference between the two systems is that ACL2 is a single program.
This program is both the user interface (with unsound features like skipping proofs,
adding axioms, and redefining functions) and also the certifier. Once a file of proofs
has been developed, ACL2 can be asked to certify it, and during this certification
only embeddable events, which are meant to be sound, are accepted. In contrast,
Milawa’s UI is entirely separate from its certification program, its kernel.

5 The Kernel

We have now seen how Milawa’s user interface can be used to develop proofs. But
this UI isn’t verified, has features like skipping proofs that are clearly unsound,
and is really just a tool for constructing inputs to the verified stack.

The rest of this paper is about our verified stack. Recall the picture of the
Milawa Stack from Section 3:

 Jitawa runtime — 8,200 lines of x86

 Milawa's kernel — 1,700 lines of Jitawa Lisp

 Level 2 prover — Propositional Rules

 Level 3 prover — Basic Functions

 Level 10 prover — Conditional Rewrites

 Level 11 prover — Tactics

model of subset of x86 instruction-set architecture

specification of impure Jitawa Lisp language

formalisation of Milawa's logic

...

so
un

dn
es

s
pr

ov
ed

 in
 H

O
L4

so
un

dn
es

s
pr

ov
ed

 d
ur

in
g

bo
ot

st
ra

pp
in

g

...

The Milawa user interface

We begin, in this section, by focusing on the kernel, which provides a critical
layer of abstraction in our verification. Everything above the kernel—the higher
level provers and all of Milawa’s proof-finding algorithms—is verified by running
the kernel to check proofs in the Milawa logic. Everything below—the kernel’s

The reflective Milawa theorem prover is sound 13

source code and the Jitawa runtime that executes this code—is separately verified
with HOL4.

The kernel is a command-line program. It is implemented in a simple Lisp
dialect (Section 5.1) that is closely related to the Milawa logic. The first part
of this program is a simple proof checker (Section 5.2) that accepts only fully
expansive, formal proofs in the Milawa logic. On top of this, there is a command
loop (Section 5.3) that processes definitions and theorems, occasionally calling
upon the proof checker to handle proof obligations.

Most of this is straightforward, but one command deserves special attention,
namely, switch. The switch command (Section 5.4) implements Milawa’s reflec-
tion mechanism by allowing the kernel to switch to user-defined proof checking
functions. We explain how this command works, its relation to the programming
language, and what the kernel requires for soundness.

5.1 The Programming Language and its Relation to the Logic

Milawa’s kernel is a text file with 1,700 lines of Lisp source code. This source
code is written in the Lisp dialect of Jitawa, our verified Lisp runtime (Section 7).
Alternately, it can be run on an (unverified) Common Lisp system; this requires
an additional 300 lines of Common Lisp code that set up a package, define the
Jitawa primitives, and reconfigure the Lisp parser. This extra Common Lisp code
isn’t verified and we don’t think of it as part of the kernel.

Throughout the kernel, we assume that all Lisp objects are made of natural
numbers, symbols, and non-circular conses. When we run the kernel with Jitawa,
this assumption automatically holds since these are the only kinds of objects that
Jitawa implements. But Common Lisp runtimes can have other kinds of objects
(e.g., negative numbers), so our extra Common Lisp code explicitly checks that
inputs are acceptable before passing them to kernel functions.

It is no accident that these acceptable Lisp objects correspond exactly the
objects in the Milawa logic. Jitawa also has primitive functions (equal, if, cons,
. . .) and macros (and, let, . . .) that match those of the Milawa logic (Section 4.1).

This leads to a kind of duality between Milawa logic functions and Jitawa
functions. Now, there are a few special Jitawa routines that aren’t in the logic
(define, print, funcall, etc.), and the Milawa logic has witness functions that
aren’t like programs. But aside from these, Milawa logic functions have Jitawa
equivalents. Similarly, while we think of the kernel as a Jitawa Lisp program, most
of its functions have corresponding definitions in the logic.

5.2 The Proof Checker

The first 800 lines of Milawa’s kernel define a proof-checking function called
logic.proofp. The “logic.” part of the name is just a prefix we use for functions
that deal with the logic, and “proofp” is short for proof predicate. This function
checks whether a Lisp object represents a valid proof in the Milawa logic.

Like any mathematical logic, Milawa’s logic has a syntactic definition of for-
mulas, some formulas that are axioms, and some rules of inference for proving
formulas (Section 8). This makes it easy to write a proof checker. We start with

14 Jared Davis, Magnus O. Myreen

functions to see if an object is a well-formed formula. We represent a proof as a
tree of steps, where each step has the formula being derived and a justification.
For each inference rule, we write a function to see if a proof step obeys the rule.
Finally, logic.proofp walks over an alleged proof to check if each step is valid.

None of this is anything novel. Even before electronic computers, Gödel wrote
a proof checker in the proof of his incompleteness theorem. So in this section we
will only sketch how the proof checker works; for a full description see Chapter 3
of Davis’ dissertation [6].

Terms and Formulas. Milawa’s logic has two kinds of syntactic entities. The terms

can be constants, variables, function applications, and λ-applications that are re-
ally just let expressions. The formulas are equalities between terms, or negations
or disjunctions of other formulas. The kernel has functions to recognize terms and
formulas:

(logic.termp x) is x a syntactically valid term?
(logic.formulap x) is x a syntactically valid formula?

These functions are almost everything we need to recognize well-formed syntax.
Since we use an S-expression format we don’t need a scheme for determining
operator precedence. Since our terms and formulas are untyped we don’t need a
type context to determine well-formedness. But for proper syntax we do require all
function applications to invoke known functions on the right number of arguments.
To check this, the kernel has separate functions that take an arity table (usually
called atbl) that has the names and arities of known functions:

(logic.term-atblp x atbl) are arities ok within term x?
(logic.formula-atblp x atbl) are arities ok within formula x?

Proof Syntax. We represent proofs as trees of proof steps. We call each proof step
an appeal since it represents an appeal to some rule of inference. Each appeal has
four components:

method a symbol that names the rule being used,
conclusion the formula that is being proved,
subproofs proofs that should establish the rule’s premises,
extras any additional information, e.g., the substitution

list for an instantiation rule

The kernel has various functions for working with these appeal structures.
For instance, the recognizer (logic.appealp x) determines if x has the proper
syntax for an appeal. There are also accessor functions for these components, e.g.,
(logic.method x) gets the method from an appeal structure x.

Proof-Step Validity. For each rule of inference, the kernel has a function that checks
whether an appeal is a valid use of that inference rule. A few examples are shown
in Figure 1 and discussed below.

The kernel uses logic.axiom-okp to check an appeal to an axiom. Here, axioms
is assumed to be the current list of axioms (in practice it will contain the built-in
axioms and also a definitional axiom for each function that has been defined).

The reflective Milawa theorem prover is sound 15

(define logic.axiom-okp (x axioms atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’axiom)
(equal subproofs nil)
(equal extras nil)
(memberp conclusion axioms)
(logic.formula-atblp conclusion atbl))))

(define logic.theorem-okp (x thms atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’theorem)
(equal subproofs nil)
(equal extras nil)
(memberp conclusion thms)
(logic.formula-atblp conclusion atbl))))

(define logic.expansion-okp (x atbl)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’expansion)
(equal extras nil)
(tuplep 1 subproofs)
;; Does the conclusion have the form "A or B,"
;; where B is the conclusion of the subproof?
(let ((b (logic.conclusion (first subproofs))))

(and (equal (logic.fmtype conclusion) ’por*)
(equal (logic.vrhs conclusion) b)
;; Also, is A a well-formed formula?
(logic.formula-atblp (logic.vlhs conclusion) atbl))))))

(define logic.appeal-step-okp (x axioms thms atbl)
(let ((how (logic.method x)))

(cond ((equal how ’axiom)
(logic.axiom-okp x axioms atbl))

((equal how ’theorem)
(logic.theorem-okp x thms atbl))

((equal how ’expansion)
(logic.expansion-okp x atbl))

...)))

Fig. 1 Examples of Proof Checking Functions

As a practical matter, the kernel records each theorem that it has accepted
and, via logic.theorem-okp, it allows previously proven theorems to be used as
proofs. Here, thms is assumed to be the list of all current theorems.

The function logic.expansion-okp is used to check appeals to the expansion

rule of inference. This rule is simply:

B

A ∨B (for any formulas A and B)

16 Jared Davis, Magnus O. Myreen

The function just checks whether the conclusion of the appeal has the form A∨B
where B is the conclusion of the sub-proof, and makes sure that A is a well-formed
formula.

There are similar functions for the other rules of inference. These functions
are then combined to form logic.appeal-step-okp, which can check whether an
arbitrary appeal is valid by just looking at its method and then invoking the ap-
propriate function.

The Proof Checker. The top-level proof checking function is

(logic.proofp x axioms thms atbl),

and it simply calls logic.appeal-step-okp on every step of a proof. All of the
functions we have discussed so far, including logic.proofp, can be regarded as
functions in the logic. We will soon see (Section 5.4) how this is used to allow the
kernel to be reflectively extended.

5.3 The Command Loop

Beyond the proof-checker, the kernel has a command-processing loop that lets you
define functions and check alleged proofs. This part of the kernel makes use of
special Lisp primitives like define, funcall, and error that are not part of the
Milawa logic, so unlike logic.proofp it does not have corresponding Milawa logic
definitions.

There are four kinds of commands:

(verify name formula proof)

Prove a theorem.

(def name formals body measure proofs)

Define a recursive function and prove it terminates.

(witness name bound-var free-vars body)

Define a witness function (to emulate a quantifier).

(switch name)

Use a new proof-checking function (Section 5.4).

The command-processing loop tries to accept a list of these commands. A
command can only be accepted when it meets certain requirements. For instance,
a verify command must have a well-formed formula and a valid proof whose
conclusion is formula. When requirements aren’t met, the kernel calls error to
abort with an error.

Most of these requirements depend on the current state of the system. For
instance, whether or not a formula is well-formed depends on what functions have
been defined. The kernel maintains an explicit state object that has the following
components:

axioms the current list of axioms (formulas)
thms the current list of theorems (formulas)
atbl the current arity table, which governs well-formed syntax
checker the current proof checker (initially logic.proofp)
ftbl the function table of definitions given to the Lisp system

The reflective Milawa theorem prover is sound 17

When commands are accepted the state is updated, e.g., after a verify command
has been accepted, its formula will be added to thms. Similarly, a successful def
or witness command results in a new formula, called a definitional axiom, to be
added to the axioms and a new entry to be added to the atbl.

5.4 Reflection and the Switch Command

The most interesting part of Milawa’s kernel is its switch command. This command
lets us replace logic.proofp with a user-defined proof-checking function. That is,
after a switch, the kernel will use the new function instead of logic.proofp to check
the proofs of theorems in verify commands, and also to check the termination
proofs for def commands.

How is this useful? The basic idea is that a new proof checker can be “more
powerful” than logic.proofp. The proofs that logic.proofp accepts must be car-
ried out in full and are very long. In practice, this limits our ability to construct
and check proofs. New proof checkers, in contrast, can accept derived rules of infer-
ence, and hence can permit shorter proofs. These new rules can be very powerful.
For instance, in Section 6, we describe extended proof checkers that can directly
use rewriting, case splitting, etc.

How can this be sound? Roughly speaking, before the kernel will accept a
command like (switch new-proofp), the user must first prove that new-proofp

can only accept theorems. As a basic syntactic criteria, the kernel insists that
new-proofp is the name of a defined function which, like logic.proofp, has four
arguments, e.g.,

(new-proofp x axioms thms atbl).

Then, to establish that new-proofp is semantically acceptable, i.e., it does not
accept proofs of non-theorems, the user must have already proved a formula called
the fidelity claim. This formula is roughly:

∀x, axioms, thms, atbl :

(new-proofp x axioms thms atbl)

=⇒∃p : (logic.appealp p)

∧ (logic.proofp p axioms thms atbl)

∧ (logic.conclusion p) = (logic.conclusion x)

Informally, this means that whenever the new proof checker accepts some appeal
x as a proof, there really does exist some fully detailed proof p of the same formula
that is accepted by logic.proofp. When a switch command meets these criteria,
the kernel updates its state so that the checker becomes new-proofp.

The real fidelity claim is slightly more complicated than the above because
the Milawa logic does not have explicit quantifiers. Instead, all free variables in a
Milawa formula are implicitly universally quantified, so we can’t directly write the
above because of the nested ∃p.

Instead, we emulate the quantifier using a witness (Skolem) function. Section
8.3 has detailed semantics, but intuitively a witness function just chooses an ele-
ment a that satisfies a predicate P (a) when such an a exists. In this case, we use

18 Jared Davis, Magnus O. Myreen

the witness function

(logic.provable-witness φ axioms thms atbl),

which chooses a valid proof of formula φ with respect to these particular axioms,
thms, and atbl when such a proof exists. More formally, the definitional axiom for
logic.provable-witness in the Milawa logic can be understood as follows:

∀φ, proof , axioms, thms, atbl :

let wit = (logic.provable-witness φ axioms thms atbl)

in (logic.appealp proof)

∧ (logic.proofp proof axioms thms atbl)

∧ (logic.conclusion proof) = φ

=⇒ (logic.appealp wit)

∧ (logic.proofp wit axioms thms atbl)

∧ (logic.conclusion wit) = φ

To read this axiom, notice that we quantify over all possible objects proof . If there
is any such object that is a valid proof of φ (the hypothesis), then we may conclude
that wit , the object returned by logic.provable-witness, is also a valid proof of φ.
On the other hand, if there is no way to prove φ, then this implication is vacuous
and tells us nothing about wit .

With this witness in place, it is straightforward to formally define provability
as an ordinary, recursive function:

∀φ, axioms, thms, atbl :

(logic.provablep φ axioms thms atbl)

=
let wit = (logic.provable-witness φ axioms thms atbl)

in (logic.appealp wit)

∧ (logic.proofp wit axioms thms atbl)

∧ (logic.conclusion wit) = φ

How does this work? Suppose φ really is a provable formula. Then wit must be a
valid proof of φ, so it will satisfy the conjuncts. Otherwise, since φ is not provable,
we don’t know anything about wit . But whatever it happens to be, it can’t satisfy
these conjuncts: if it did, then it would be a valid proof of φ, which we have
assumed does not exist.

Connecting Lisp and the Logic. To support reflection, care is taken so that every
function defined in the Milawa logic has a corresponding definition in the Lisp
runtime.

In the case of an ordinary def command, the kernel executes a Jitawa Lisp
define command to instruct the Lisp system to introduce a new executable func-
tion with the given name, formals, and body. The ftbl records each definition that
was given to the Lisp, and also ensures that the user cannot redefine kernel func-
tions or use names that are Jitawa primitives like error.

The reflective Milawa theorem prover is sound 19

The Lisp definitions for witness commands are more subtle. Witness functions
allow you to emulate quantifiers by choosing an element a that satisfies a pred-
icate P (x) when such an a exists. Take, for instance, logic.provablep-witness,
introduced just above. From a logical perspective, the definitional axiom for this
function lets you choose some proof of any provable formula φ. Unfortunately, this
axiom doesn’t suggest any algorithm that we could implement as a program that
returns a proof for any provable φ.

Although we can’t magically synthesize a Jitawa analogue for a witness func-
tion that computes real witnesses, we do still introduce a Jitawa analogue that
simply calls the error primitive to say it cannot be executed because it is a wit-
ness function. Why do we even bother? One reason is that nothing in Milawa pro-
hibits ordinary recursive functions in Milawa from calling witness functions—for
instance, logic.provablep calls logic.provable-witness. This error-causing defi-
nition ensures that if we ever attempt to execute a function like logic.provablep,
a sensible error will be produced. (ACL2 follows this same approach.)

Altogether this connection ensures that any successful executions of the Jitawa
analogues of Milawa logic functions do, in fact, accurately reflect the logical def-
initions. This is paramount to the correctness of Milawa’s reflection mechanism.
Consider:

– Before the switch command will allow some new-proofp function to be in-
stalled, it requires that the fidelity claim for new-proofp has been established
using the current proof checker.

– This fidelity claim is, like any formula, a logical statement; it pertains to the
logical definition of new-proofp.

– Based on this fidelity claim, the kernel will subsequently begin executing the
Jitawa analogue of new-proofp to check proofs.

In other words, this connection between the Lisp and the logic plays a funda-
mental role in ensuring that the fidelity claim is actually meaningful, and allows
the kernel to be extended only with verified code.

5.5 Relation to LCF-style systems

Milawa’s kernel has many similarities to an LCF-style [8] theorem prover such as
HOL or HOL Light. Theorems in these systems are instances of the thm datatype,
and can only be constructed by using a handful of constructor functions. In a pure

LCF-style system, the only constructors implement the primitive rules of inference;
an impure system might include additional constructors, e.g., to allow proofs to be
constructed more efficiently.

Milawa’s initial proof checker, logic.proofp, is quite like the thm type. Both
of these are meant to ensure valid reasoning by requiring all proofs to be carried
out in full. In practice, this means developing fully expansive proof-finding tactics
that can justify their claims by building acceptable proofs or thms.

Of course, there are also many differences.
LCF-style systems have an efficiency advantage in that intermediate proof

steps can be garbage collected once they are no longer needed, whereas Milawa’s
style of proof objects must exist in full in the proof files to be checked. Proofs in
higher order logics are also likely to be much shorter than the proofs logic.proofp

20 Jared Davis, Magnus O. Myreen

accepts: natural-deduction style logics are quite convenient in comparison with
Milawa’s sentence-style logic; they also support more powerful theorems [34] than
a first-order system like Milawa, and these theorems can shorten proofs.

On the other hand, Milawa’s very simple untyped logic has a much more direct
connection to the programming language. It also allows us to quote arbitrary
terms in a very direct and easy way, without having to deal with types. This kind
of a logic seems like a natural starting point when exploring the development of
theorem provers based on reflection.

6 The Bootstrapping Process

We have now seen two complementary systems. Milawa’s user interface (Section
4) allows you to develop proofs using tactics like %use and %auto that are similar
to Boyer-Moore style proof automation. In contrast, its kernel (Section 5) requires
you to give it a proof of every alleged theorem, and just checks these proofs.

In this section, we explain the bootstrapping process that connects these two
systems. This process involves using Milawa’s reflective kernel to verify all of the
tactics of the user interface. It culminates in the verification and installation (via
the switch command) of a level 11 proof checker. This so-called “proof checker”
is really a theorem prover; it can apply whole sequences of Milawa’s tactics as a
single proof step.

6.1 Planning the Proof

Milawa’s theorem proving tactics are complex programs, so it is challenging to
prove properties about their behavior. Meanwhile, the kernel only accepts fully
expansive proofs, which are large and difficult to construct. We begin by developing
a detailed, informal proof plan. This planning process separates the intellectual
task of discovering why Milawa’s tactics are sound from the engineering task of
constructing a formal proof that Milawa’s kernel can accept.

We develop our proof plan in ACL2. ACL2’s logic is so similar to Milawa’s that
it is quite easy to model Milawa in ACL2. While ACL2 is normally thought of as
a formal verification tool, we want to stress that we are using it only informally

as a familiar, mature environment for sketching the proof—our final evidence of
Milawa’s soundness does not require any trust in ACL2.

What does it mean to verify a tactic? The basic goal is to show that any formula
the tactic claims is true can indeed be justified using the rules of the Milawa logic.
Our approach is constructive. First, we write a fully expansive version of the tactic.
Then, we show that for all sensible inputs, the fully expansive version produces a
valid logic.proofp-style proof, and this proof has “the right conclusion.”

As an example, Milawa’s rewriter can evaluate ground terms to constants, e.g.,
given (fact 5), it can produce 120. The claim being made here that the formula,
“(fact 5) = 120” is provable. To verify evaluation, we first write a fully expansive
evaluator. Whereas our ordinary evaluator will produce 120 when given (fact 5),
this new function instead constructs a logic.proofp-style proof that concludes
“(fact 5) = 120”.

In our proof plan, we use ACL2 to show that:

The reflective Milawa theorem prover is sound 21

1. If the definitions used to evaluate some term, x, are valid—i.e., they involve
only well-formed formulas according to the atbl and are all among the axioms

given to logic.proofp—then our fully expansive evaluator produces a valid
proof—i.e., the object it produces is accepted by logic.proofp.

2. If x′ is the result of evaluating x, then our fully expansive evaluator proves the
right formula, i.e., the conclusion of its proof is x = x′.

In the course of our ACL2 proof plan, we develop fully expansive versions of
all of Milawa’s tactics, and sketch out proofs like the above. This is some work.
As groundwork, we implement many derived rules of inference as functions which
we call builders (Section 6.2). These builders serve as very useful abstractions for
verification, and allow us to develop a compositional approach to verifying builders
(Section 6.3). Through considerable engineering, we follow this approach to verify
all of Milawa’s tactics (Section 6.4).

With the proof plan in place, all that remains is the engineering task of con-
structing a formal proof that Milawa’s kernel can accept. We will return to that
in Section 6.5, where we will put these fully expansive tactics to another use!

6.2 Implementing Derived Rules

We implement derived rules of inference using builder functions. A builder function
takes as inputs proofs of its premises, and perhaps other various related terms or
formulas. From these inputs, it carries out some sequence of proof steps that results
in the desired proof.

Let’s see an example. We will use two primitive rules of the Milawa logic:

¬A ∨A Propositional Schema
A ∨B ¬A ∨ C

B ∨ C Cut

Using these rules, we will derive a new rule:

A ∨B
B ∨A Commutativity of Or

Here is a derivation of this rule, and a corresponding builder function:

1. A ∨B Given
2. ¬A ∨A Prop. Schema
3. B ∨A Cut lines 1, 2

(define build.commute-or (x)

(let* ((a (logic.vlhs (logic.conclusion x)))

(line1 x)

(line2 (build.propositional-schema a))

(line3 (build.cut line1 line2)))

line3))

Notice that to carry out the primitive steps, build.commute-or calls upon
build.cut and build.propositional-schema. These functions are primitive builders

which simply cons together an appeal structure that is suitable for logic.proofp.
In contrast, build.commute-or itself is a derived builder—a function that constructs
its proofs by calling other builders.

When we write subsequent derived builders, we can freely use primitive or
derived builders that we have already implemented. This is convenient in that it

22 Jared Davis, Magnus O. Myreen

allows us to reuse common proof patterns, but it is still a fully expansive way of
building proofs. That is, the proof objects that our builders generate are carried
out in full, using only the primitive steps that logic.proofp accepts.

Milawa’s derived builders are similar to derived rules in an LCF-style sys-
tem like HOL. One difference is that builders construct new proof objects for
logic.proofp to check later, whereas derived rules in HOL construct new thm in-
stances that are checked as they are built. A more important difference is that
Milawa’s builders are ordinary functions in the Milawa logic, so we can reason
about them. In contrast, derived rules in HOL are ML programs that construct
ML objects. They aren’t defined inside of higher-order logic, so the prover cannot
directly reason about them.

6.3 Compositional Verification of Derived Rules

This ability to reason about builders plays a key role in the verification of Milawa.
We are generally not concerned with the details of how a particular builder func-
tion constructs its proof. But we would like to know that, under suitable input
constraints, each builder creates a proof that is

– well typed: it meets the basic structural constraints of logic.appealp,
– relevant: it has the desired conclusion, and
– faithful to the logic: it only uses valid inferences accepted by logic.proofp.

For primitive builders like build.propositional-schema that simply cons to-
gether new appeal objects, we establish these properties by structural arguments
that involve, for instance, the definitions of functions like logic.appealp and
logic.appeal-step-okp. Here are what these properties look like, in our ACL2
proof plan, for the propositional schema:

(well-typed)
(logic.formulap a)

=⇒ (logic.appealp (build.propositional-schema a))

(relevant)
(logic.conclusion (build.propositional-schema a))

= (logic.por (logic.pnot a) a) ;; i.e., ¬A ∨A

(faithful)
(logic.formula-atblp a atbl)

=⇒ (logic.proofp (build.propositional-schema a)
axioms thms atbl)

Meanwhile, here are the three theorems for build.commute-or:

(well-typed)

(logic.appealp x) ∧
(logic.fmtype (logic.conclusion x)) = ’por* ;; given A ∨B

=⇒
(logic.appealp (build.commute-or x))

(relevant)

(logic.conclusion (build.commute-or x))
=

(logic.por (logic.vrhs (logic.conclusion x)) ;; derive B ∨A
(logic.vlhs (logic.conclusion x)))

(faithful)

(logic.proofp x axioms thms atbl) ∧
(logic.fmtype (logic.conclusion x)) = ’por*

=⇒
(logic.proofp (build.commute-or x) axioms thms atbl)

The reflective Milawa theorem prover is sound 23

While the statements of the three theorems look similar for primitive and
derived builders, their proofs are very different. For derived rules, we carry out
these proofs entirely by appealing to the (already proven) three theorems for each
subsidiary builder. There is no need to involve the definitions of functions like
logic.appeal-step-okp or to consider the particular cons structures being pro-
duced. There is also no need to consider the details of how the subsidiary builders
operate.

This is important because it means the verification approach is modular and
compositional: even if some subsidiary builder is large and complicated, this com-
plexity is hidden away during later proofs about other builders that make use of
it. Also, we can freely modify a builder, e.g., to use a shorter derivation, without
impacting the proofs for builders that depend on it; we will soon see (Section 6.5)
that it is useful for builders to produce short proofs.

Following this basic approach, in our proof plan, we develop and verify a collec-
tion of efficient builders to carry out basic propositional reasoning steps, to reason
about equality, and to reason about core functions like if and equal. Beyond
these simple derivations, we also develop other rules with inductive derivations.
For instance, the Subset Rule is:

A1 ∨ · · · ∨An
B1 ∨ · · · ∨Bm

, where {A1, . . . , An} ⊆ {B1, . . . , Bm}

We implement inductive derivations as recursive builders, and verify them using
inductive proofs. Some other useful inductive derivations include the Tautology
Rule, equality substitution throughout terms, and evaluation of ground terms using
a McCarthy [35] style evaluator and a fully expansive function that can build
corresponding proofs of evaluations.

Students in introductory logic courses are often asked to find such derivations.
When developing our basic builders, we were able to draw upon substantial pre-
vious work. Milawa’s rules of propositional logic are taken essentially from Shoen-
field [36], and many of our builders follow derivations used by Shankar [37] in his
proof of Gödel’s theorem, by Boyer and Moore [38] in their work on NQTHM, and
by Kaufmann, Manolios, and Moore [2] in their description of the ACL2 logic.

6.4 From Derived Rules to Theorem Proving Tactics

The builders we have described so far allow us to carry out “forward” directed
reasoning. By this we mean that they allow us to prove new formulas by combin-
ing together other formulas that we already have proven. However, to implement
effective proof automation, we really would like to be able to work “backward”
from a goal. For instance, in Section 4 we saw how the user interface allows us to
submit goals and then simplify these goals, using tactics like %split and %crewrite

to create new subgoals. This kind of backward proof search is common throughout
all interactive theorem provers.

To support backward-directed reasoning, we develop functions for working with
clauses. A clause in Milawa is a disjunction of literals. Each literal is technically a
formula of the form term 6= nil, but informally we think of each literal simply as
a term. Since disjunction is associative and commutative, there isn’t an explicit

24 Jared Davis, Magnus O. Myreen

notion of the hypotheses or conclusion of a clause as there are in sequents. However,
in the user interface clauses are displayed as implications by arbitrarily taking the
last literal as the conclusion, and the (negated) previous literals as the hypotheses.
Any Milawa formula can be “compiled” into an equivalent clause by propositional
reasoning and the axioms about equal, and if.

All of Milawa’s high-level tactics operate on clauses. In the LCF [8] system,
a tactic t is a function that takes a goal to prove, g, and produces (1) a list of
subgoals, g1, . . . , gn, which should together imply g, and (2) a function, v, called a
validation, which given proofs of g1, . . . , gn should construct a proof of g. Tactics in
Milawa are similar, but since Milawa is first order we cannot implement validations
as higher-order functions. Instead, each Milawa tactic is a pair of functions: one
which like t reduces a goal to some subgoals, and one which like v justifies this
reduction by proving g when given proofs of g1, . . . , gn. Like builders, tactics are
ordinary functions in the Milawa logic; we can reason about them and establish
their validity, i.e., that the validation function really can prove the original goals
when it is given proofs of the subgoals.

The general idea, then, is as follows. If we want to prove some arbitrary formula
A, we begin by compiling it into a goal clause. We then apply a sequence of tactics,
e.g., %crewrite, %split, etc., which may split the goal into new subgoals, simplify
those subgoals, etc. Once we have eliminated all of the goals, we chain together
the validation functions for the tactics, in the reverse order, to construct proofs.
Eventually this produces a proof of our goal clause, which we can translate into a
proof of our goal formula using the builder function for our formula compiler. The
user interface manages this process, recording the order of tactic application and
the arguments to tactics in a proof skeleton structure.

Many of Milawa’s tactics are very simple. For instance, the %use tactic simply
extends a goal clause with an extra literal that is an instance of a previously
proven theorem. This may seem silly: to prove A, we will instead prove true ∨ A.
But actually :use hints are very commonly used in ACL2 proofs as a way to
guide the prover to the “right” instantiations of theorems; %use is similarly useful
in Milawa, for instance see the proof in Section 4.3. Milawa’s %generalize tactics,
named after ACL2’s generalization procedures, simply replace an arbitrary subterm
with a fresh variable everywhere throughout a clause. The %fertilize tactic, which
is something like ACL2’s cross fertilization procedure, just eliminates a top-level
“hypothesis” of the form (equal x y) by replacing all occurrences of x with y

throughout the clause. Milawa’s %elim and %conditional-eqsubst tactics, which
are like ACL2’s destructor elimination procedure, are only slightly more complex.

More sophisticated tactics do much more to automatically simplify clauses. For
instance, the %cleanup tactic:

– Standardizes “not-variants” like (equal x nil) and (if x nil t) to (not x).
– Eliminates double negations like (not (not x)).
– Removes (proves) any clauses with “obviously true” literals like 5 6= nil.
– Removes (proves) any clauses with complementary literals like a and (not a).
– Removes any “absurd” literals like nil or (not 5), i.e., simplifies A∨ false A.
– Removes any repeated literals, i.e., simplifies A ∨A A.
– Removes any “subsumed” clauses (supersets of other clauses).

Meanwhile, the %split tactic extends these cleaning steps with a case splitting
mechanism. That is, it can lift the conditions of if expressions to the top level.

The reflective Milawa theorem prover is sound 25

This is a basic mechanism that lets us reduce goals like P → (if a b c) into
separate subgoals like P, a→ b and P,¬a→ c.

Milawa’s most complex tactics are its rewriters. The conditional rewriter,
%crewrite, walks over a clause, L1 ∨ ... ∨ Ln, rewriting each literal Li in turn.
When it rewrites L1, it can assume that all of the other literals are false. Similarly,
when it encounters a term of the form (if a b c), it can assume a is true while
rewriting b, and that a is false while rewriting c.

The rewriter tracks these assumptions using an assumptions structure, which has
disjoined-set style data structures to track equal and iff-equivalent terms. That
is, if we first assume (equal a b) and then assume (equal b c), the assumptions
structure will subsequently know that a and c are also equal. The assumptions
system helps the rewriter to canonicalize equal and equivalent terms to their sim-
plest syntactic forms. For instance, if the rewriter encounters c, the assumptions
system could reduce it to a.

To verify the assumptions system, we develop a “slow” version of it that records
all of the explicit assumptions that were made, and that builds equivalence traces

that capture, at a somewhat high level, how conclusions like (equal a c) were
reached. These traces can then be compiled into fully expansive proofs. In contrast,
the “fast” version of the assumptions structure does not record how it arrived at its
conclusions. It is verified by showing that it always reaches the same conclusions
as the slow version.

The rewriter itself is quite complex. It can make assumptions, evaluate ground
terms, and use previously proven rules. If these rules have free variables, the
rewriter will try to intelligently instantiate them using suitable terms it has made
assumptions about. Rules can have backchain limits to prevent the rewriter from
spending excessive time relieving their hypotheses, or can have forced hypotheses
which will be turned into new subgoals when the rewriter cannot prove them. The
application of rules can be syntactically restricted so that rules like (+ a b) =
(+ b a) do not loop. There is also a sophisticated ancestors checking heuristic that
can avoid subtle backchaining loops.

The verification of the rewriter is very much like the verification of the as-
sumptions system. We develop a “slow” version of the rewriter that builds rewrite

traces. These traces explain, in high level but detailed steps, how it has arrived at
its conclusion, and they contain enough information to be compiled into formal
proofs. In contrast, the “fast” version of the rewriter does not record how it has
carried out its work, and is verified by showing it computes the same results as
the slow rewriter.

For a full treatment of Milawa’s rewriter and other tactics, see Chapters 7-10
of Davis’s dissertation [6].

6.5 Formalizing the Proof Plan

With the intellectual task of developing our proof plan completed, we are ready
to turn our attention to the engineering task of constructing a formal proof.

How can we do this? Consider that Milawa is styled after ACL2 and that,
during the course of our ACL2 proof plan, we have implemented fully expansive
versions of all of Milawa’s tactics. So here is the idea. First, we will redo the ACL2
proof plan using Milawa’s (untrustworthy) user interface. Then, since we already

26 Jared Davis, Magnus O. Myreen

have fully expansive versions of Milawa’s tactics, we’ll use them to emit a formal
version of the Milawa proof, which we can check with the kernel.

This idea almost works.

Following the ACL2 proof plan with Milawa was sometimes tricky, but ulti-
mately successful. Milawa is meant to be like ACL2, and we developed tools for
keeping our Milawa proof in sync with the ACL2 proof. But ACL2 really has
quite a lot of features. To be able to follow the ACL2 proof sketch, we sometimes
modified Milawa’s tactics to make them more like ACL2, e.g., we extended Mi-
lawa’s rewriter with ancestors checking, free variable matching, and forcing. We
also sometimes reworked our ACL2 proofs to avoid features that would be hard to
reimplement, such as its arithmetic procedure and type reasoning system. In the
end, our Milawa proof matches our ACL2 proof almost lemma for lemma.

However, the idea of using the fully-expansive versions of Milawa’s tactics to
produce logic.proofp-style proofs turned out to be impractical. Even despite work
to make Milawa’s builders efficient, the proofs become overwhelmingly large.

Fortunately, we can avoid needing to create fully expansive proofs by taking
advantage of the kernel’s reflection mechanism. That is, instead of trying to verify
Milawa’s tactics directly with logic.proofp style proofs, we first introduce and
verify a sequence of increasingly capable proof checkers. We use the word levels

to describe this sequence—that is, logic.proofp is the Level 1 proof checker; the
objects it accepts are Level 1 proofs and may use only Level 1 proof steps; the
Level 1 steps correspond to the primitive rules of the logic.

At each new level in the sequence, we allow new kinds of proof steps to be
used. For instance, the Level 2 proof checker can carry out many derived rules of
inference, such as the Commutativity of Or, as a single step. Because of our existing
work to verify our builders and tactics, we can easily to develop an ACL2 proof
sketch of the fidelity claim (Section 5.4) that is necessary to install the new proof
checker. After porting this proof sketch to Milawa, we can emit a Level 1 proof
of the fidelity claim for Level 2. Even though this is a fully expansive proof, it is
small enough to practically construct and check. (Section 6.6)

This is progress. By taking advantage of these new steps, Level 2 proofs can
be written more concisely than Level 1 proofs. For instance, Right Associativity is
a derived rule of inference that takes eight level 1 steps to carry out. But Level 2
proofs can use this rule directly, as a single step. This savings is realized for every
use of the new rule. This means it is practical to build and check more difficult
proofs in Level 2 than in Level 1. A Level 2 proof of Milawa’s fidelity is still too
large to construct, but it is possible to introduce additional intermediate proof
checkers, each more capable than the last. (Section 6.7).

6.6 Defining and Verifying New Proof Checkers

The Level 2 proof checker accepts all of the primitive rules of inference, and also
accepts 26 new derived rules of inference, each of which is a simple propositional
manipulation. These rules include the Commutativity of Or rule (Section 6.2),
Modus Ponens, and a few critical rules that are heavily used in tactics like %split.
Even this modest selection of rules makes proofs for Level 2 much shorter than
proofs for logic.proofp.

The reflective Milawa theorem prover is sound 27

(define build.commute-or-okp (x)
(let ((method (logic.method x))

(conclusion (logic.conclusion x))
(subproofs (logic.subproofs x))
(extras (logic.extras x)))

(and (equal method ’build.commute-or)
(equal extras nil)
(equal (len subproofs) 1)
(let ((subconc (logic.conclusion (car subproofs))))

(and (equal (logic.fmtype conclusion) ’por*)
(equal (logic.fmtype subconc) ’por*)
(equal (logic.vlhs conclusion) (logic.vrhs subconc))
(equal (logic.vrhs conclusion) (logic.vlhs subconc)))))))

(define level2.step-okp (x axioms thms atbl)
(let ((method (logic.method x)))

(cond ((equal method ’build.commute-or)
(build.commute-or-okp x))

((equal method ’build.right-expansion)
(build.right-expansion-okp x atbl))

;; ... cases for all the other new rules ...
(t
;; otherwise it is not a new step, but we will still
;; accept all Level 1 steps
(logic.appeal-step-okp x axioms thms atbl)))))

Fig. 2 Core of the Level 2 Proof Checker

The definition of the Level 2 proof checker is very similar to logic.proofp. In
particular, recall from Section 5.2, and Figure 1 the definitions of

– individual step checking functions like logic.expansion-okp, and
– the wrapper function for arbitrary Level 1 proof steps, logic.appeal-step-okp.

For Level 2, we write:

– new individual step-checking functions like build.commute-or-okp, and
– a new wrapper that recognizes any Level 2 step, level2.step-okp.

The functions are shown in Figure 2. The level 2 proof checker, level2.proofp,
simply applies level2.step-okp everywhere throughout a proof.

Notice that, besides accepting the new Level 2 steps, the Level 2 proof checker
also still accepts all Level 1 steps. This is not strictly necessary. It would be
perfectly safe, though not useful, to install a new proof checker that doesn’t accept
any proofs at all! However, as a general convenience, we prefer to arrange our
higher-level provers to also accept lower-level steps.

In Milawa’s kernel, before we can use the switch command to begin using
level2.proofp to check proofs, we must first show that it only accepts provable
formulas. This boils down to showing that each new individual step-okp function
satisfies the following property: whenever *-step-okp accepts an appeal x, and
all of the subproofs of x are provable, then the conclusion of x is also provable.
This, in turn, is an easy corollary of the three theorems (Section 6.3) for each
corresponding builder.

The successful translation of the fidelity claim for the Level 2 proof checker
was an important landmark in our bootstrapping process. Early in the project, we

28 Jared Davis, Magnus O. Myreen

had serious concerns about whether we could practically emit a fully expansive
proof showing the fidelity of a more powerful proof checker. In total, the proof
involves 421 definitions and 4188 theorems, but most of these definitions and
theorems (about 80%) are from Milawa’s core utilities and logic libraries and are
not specifically about the new Level 2 rules and builders. The proofs are 1.7 GB
on disk.

6.7 Summary of Proof Checkers

The bootstrapping process introduces several new proof checkers. Here is a brief
summary of the new rules we add at each level:

Level 2 Basic propositional rules
Level 3 Rules about equality and basic functions like equal, if, etc.
Level 4 Miscellaneous groundwork, mostly clause support
Level 5 Equivalence traces (rewrite assumptions), clause updating
Level 6 If-lifting, core clause splitting algorithm
Level 7 Full %split tactic (with if-lifting and clause cleaning)
Level 8 Rewrite traces (the major steps in slow rewriting)
Level 9 Unconditional rewriting (fast, trace-free version)
Level 10 Conditional rewriting (fast, trace-free version)
Level 11 All remaining tactics

The selection of rules to include into each level is guided by pragmatics. At
each level, we are looking to add new rules that will make the new proof checker
more powerful and able to accept much shorter proofs. However, we cannot add
rules whose verification would be too complex for the current proof checker. To
identifying important rules to focus on, we developed tools to profile the sizes of
proofs and to explain how much of a proof was due to each kind of tactic; we
then studied the control flow of these tactics to look for builders that we could
approach. For a detailed description of work, see Chapter 12 of Davis [6].

Higher-level proofs are typically more concise, faster to construct, and faster to
check than lower-level proofs. Because the amount of improvement realized at each
level depends upon the particulars of the proof being constructed, it is not possible
to make broad statements like “Level n proofs are 35% smaller and can be checked
20% more quickly than Level n−1 proofs.” For instance, in Level 6 we verified our
clause splitting algorithm. This can result in considerable improvements in proofs
that make heavy use of clause splitting, but will not appreciably impact a proof
that is mainly carried out by rewriting.

Even so, we can at least illustrate the impact of higher-level proof checkers
on an example proof. For this example we consider the proof of faithfulness of
our evaluator, which is normally a moderately difficult Level 7 proof. We instruct
the user interface to construct the proof at each level. We can then compare the
sizes of these proofs and how long it takes to build and check them. Attempts to
construct a Level 1 proof failed with more than 25 GB allocated.

The reflective Milawa theorem prover is sound 29

Level Build Time (sec) Size (million conses) Check Time (sec)

1 ∅ ∅ ∅
2 6,238 8,289 31,451
3 2,879 4,310 5,323
4 2,279 1,117 2,816
5 2,157 1,049 3,120
6 1,482 426 2,737
7 768 222 1,874
8 691 171 1,430
9 167 129 440

10 65 58 457
11 8 27 163

The full bootstrapping proofs end up being quite large. Taken all together,
there are 2,081 definitions and 13,563 theorems. The collected proof files come to
8.4 GB of disk space.

Milawa’s bootstrapping process reduces the question of trusting an interactive
theorem prover to that of trusting its kernel. In the remainder of the paper, we
turn our attention to the lower levels, e.g., the correctness of the kernel and the
runtime beneath it.

7 The Runtime

The Milawa theorem prover was originally programmed to run on top of Common
Lisp implementations [6]. However, in order to extend Milawa’s soundness story
down into the programming language layers, we have implemented a simpler Lisp
runtime called Jitawa [10]. Jitawa was designed to be simple enough to be verified,
yet sufficiently realistic to be able to host Milawa’s kernel and run through its
boostrapping process.

In this section, we describe Jitawa and the requirements the Milawa theorem
prover puts on the underlying programming language and runtime. In Section 9, we
present Jitawa’s formal specification and, in Section 12, we describe how Jitawa’s
x86 implementation was constructed and verified.

7.1 Language Requirements

On the face of it, Milawa is quite modest in what it requires of the underlying Lisp
runtime. Most of the code for its kernel and all of the code for its theorem prover
are written as functions in the Milawa logic. These functions operate on just a
few predefined datatypes (natural numbers, symbols, and conses), and involve a
handful of primitive functions and macros like car, +, list, and cond corresponding
to the primitives and macros of Milawa’s logic. To run these functions we just
need a basic functional programming language that implements these primitives
and macros.

Beyond this, Milawa’s original trusted core also includes some Common Lisp
code that is outside of the logic. As some examples:

30 Jared Davis, Magnus O. Myreen

– It destructively updates global variables that store its arity table, list of axioms,
list of definitions, and so forth.

– It prints some status messages and timing information so the user can evaluate
its progress and performance.

– It can use the underlying Lisp system’s checkpointing system to save the pro-
gram’s current state as a new executable.

It was straightforward to develop a new version of the Milawa core that does away
with the features mentioned above: we avoid destructive updates by adopting a
more functional “state-tuple” style, and simply abandon checkpointing and timing
reports since, while convenient, they are not essential.

On the other hand, some other Common Lisp code is not so easy to deal with.
In particular:

– Milawa requires that the underlying Lisp system compiles user-supplied func-
tions as they are defined, which is important for running new proof checkers.

– Milawa dynamically calls either logic.proofp or whichever proof checker has
been most recently installed via switch to check proofs.

– Milawa aborts with a runtime error when invalid events or proofs are encoun-
tered, or if an attempt is made to run a witness function.

We did not see a good way to avoid any of this. Accordingly, the hosting Lisp
system must support at least: on-the-fly compilation of user-defined functions,
dynamic function invocation, and some way of causing runtime errors.

7.2 Jitawa Lisp

The Lisp language Jitawa implements is described formally in Section 9, however,
we summarize its main features here. Jitawa implements the following primitve
Lisp functions and macros that correspond directly to the Milawa theorem prover’s
primitives and macros, which were described in Section 4.1.

equal if consp cons car cdr natp < + - symbolp symbol-<

let let* cond or and list first second third fourth fifth

Jitawa also features a few primitive functions that are not present in Milawa’s
logic, namely:

(define name vars body) defines a new function in Jitawa
(print x1 x2 ... xn) prints x1. . . xn as a line of output
(error x1 x2 ... xn) same as print but also exits Jitawa
(funcall fname x1 ... xn) calls function fname with x1. . . xn

Note that all of these functions evaluate their arguments. In particular, this means
that definition of most functions use quotes to avoid unwanted evaluation:

(define ’increment ’(n) ’(+ n ’1))

Jitawa includes a macro called defun which expands to a call to define with a
quote inserted for each argument. The line above could equally well have been
written:

(defun increment (n) (+ n ’1))

Dynamic function calls are performed using the funcall primitive, e.g. (funcall
exp n) returns the same as (increment n) if exp evaluates to the symbol increment.

The reflective Milawa theorem prover is sound 31

7.3 Designed for Performance and Scalability

The real challenge in constructing a practical runtime for Milawa (or any other
theorem prover) is that performance and scalability cannot be ignored. A previ-
ously verified Lisp interpreter [39] was hopelessly inadequate: its direct interpreter
approach was too slow, and it also had inherent memory limitations (due to the
32-bit architectures) that prevent it from handling the large objects the theorem
prover must process.

For Jitawa, we started from scratch and made sure the central design decisions
allowed our implementation to scale. For instance:

– To improve performance, functions are dynamically compiled to machine code.
– To support large computations, we target 64-bit x86. Jitawa can handle up to

231 live cons cells, i.e., up to 16 GB of conses at 8 bytes per cons.
– Parsing and printing are carefully coded not to use excessive quantities of

memory. In particular, lexing is merged with parsing into what is called a
scanner-less parser, and abbreviations are supported efficiently.

– Running out of heap space or stack space is a real concern; we ensure graceful
exits in all circumstances and helpful error messages if limits are reached.

We believe these design decisions were necessary for our Lisp implementation
to be able to scale to the computationally heavy task of running through Milawa’s
boostrapping process.

7.4 I/O Requirements and Interaction

In Milawa’s original trusted core, each def and verify event includes the name of
a file that should contain the necessary proof, and these files are read on demand
as each event is processed. For a rough sense of scale, the proof of bootstrapping
process is a pretty demanding effort; it includes over 15,000 proof files with a total
size of 8 GB.

The proofs in these files—especially the lowest-level proofs—can be very large
and repetitive. As a simple but crucial optimization, an abbreviation mecha-
nism [29] lets us reuse parts of formulas and proofs. For instance,

(append (cons (cons a b) c)

(cons (cons a b) c))

could be more compactly written using an abbreviation as

(append #1=(cons (cons a b) c)

#1#).

We cannot entirely avoid file input since, at some point, we must at least tell
the program what we want it to verify. But we would prefer to minimize interaction
with the operating system. Accordingly, in our latest version of the Milawa core,
we do not keep proofs in separate files. Instead, each event directly contains the
necessary proof, so we only need to read a single file. This approach exposes
additional opportunities for structure sharing. While the original, individual proof
files for the bootstrapping process are 8 GB, the new events file is only 4 GB.

32 Jared Davis, Magnus O. Myreen

It has 525 million abbreviations. At any rate, the underlying Lisp runtime needs
to be able to parse input files that are gigabytes in size and involve hundreds of
millions of abbreviations.

For Jitawa, we decided to read all input from stdin and write all output to
stdout. Jitawa provides a read-eval-print loop. Here is an example run. Lines
starting with > are user input and the other lines are output from Jitawa.

> ’3

3

> (cons ’5 ’(6 7))

(5 6 7)

> (defun increment (n) (+ n ’1))

NIL

> (increment ’5)

6

> (funcall ’increment ’5)

6

> ’(#1=(a b c) #1#)

((a b c) (a b c))

Jitawa’s verified implementation makes calls to (unverified) external C func-
tions which our proofs assume perform a few basic I/O operations correctly, e.g.
to read a line of input and output a string.

7.5 Jitawa Implementation in Numbers

Jitawa’s implementation is setup as a small C file (200 lines of C and 200 lines of
assembly) which allocates the necessary heap space and then starts the verified x86
machine code (8,200 x86 instructions). A full run through Milawa’s bootstrapping
process takes 5 days, which is approximately eight times slower than doing the
same with CCL — a state-of-the-art Common Lisp implementation.

8 The Logic the Kernel Implements

Now that we have explained the role of each component in the Milawa stack (user
interface, theorem prover, kernel and runtime), we turn our attention to the formal
specification and verification that build up to our top-level HOL theorem about
the stack’s trustworthiness (Section 13). We structure the next few section as a
top-down descent through the layers.

 Jitawa runtime — 8,200 lines of x86

 Milawa's kernel — 1,700 lines of Jitawa Lisp

model of subset of x86 architecture (Section 11)

specification of Jitawa Lisp language (Section 9)

formalisation of Milawa's logic (Section 8)

ke
rn

el

im
pl

em
en

ts

lo
gi

c
(S

ec
tio

n
10

)

to
p-

le
ve

l s
ou

nd
ne

ss

th
eo

re
m

 (S
ec

tio
n

13
)

ru
nt

im
e

is

co
rre

ct

(S
ec

tio
n

12
)

The reflective Milawa theorem prover is sound 33

We begin, in this section, with the specification of the Milawa logic and its
semantics. The Milawa logic is a first-order logic of untyped recursive functions
with induction up to ε0, similar to the logics of NQTHM and ACL2. We have
used HOL to formalize the syntax (Section 8.1), semantics (8.3), and rules of
inference (8.4) of the Milawa logic, and to mechanically prove the soundness of its
inference rules (8.5) and definition principle (8.6).

8.1 Syntax

We formalize the syntax of the Milawa logic as the following datatype:

sexp ::= Val num N numbers
| Sym string symbols
| Dot sexp sexp cons pairs

prim ::= If | Equal | Not | Symbolp | Symbol less

| Natp | Add | Sub | Less | Consp | Cons

| Car | Cdr | Rank | Ord less | Ordp

func ::= PrimitiveFun prim primitives
| Fun string user-defined

term ::= Const sexp constant
| Var string variable
| App func (term list) function app.
| LambdaApp (string list) term (term list) (λformals. body) actuals

formula ::= ¬formula negation
| formula ∨ formula disjunction
| term = term term equality

These type definitions are not quite enough to capture correct Milawa syn-
tax. We write separate well-formedness predicates called term ok and formula ok to
formalize the additional requirements. In particular,

– every function application must have correct arity and refer to a known function
with respect to the context (see below), and

– every lambda application must have the same number of formal and actual
parameters, must have distinct formal parameters, and its body may not refer
to variables besides its formal parameters. This requirement makes substitution
straightforward.

The term ok and formula ok well-formedness predicates depend on a logical context,
π, which will be explained below.

8.2 Context

The definition of the syntax, semantics and inference rules all depend on infor-
mation regarding the user-defined functions. To keep the formalisation simple, we

34 Jared Davis, Magnus O. Myreen

chose to combine all of this information into a single mapping, which we call the
logical context. We model the logical context as a finite partial map π from function
names, of type string, to elements of type:

string list× func body × (sexp list→ sexp)

The first component, string list, names the formal parameters for the function. The
second component, func body, holds the syntax of the definition for the function.
This func body holds the right-hand side of a definition in case this is a conventional
function definition based on an equation, or a variable name and property if this is
the definition of a witness function (these witness functions are similar to Hilbert’s
choice in HOL). For reasons that will be explained in Section 8.6, we also allow
the omission of the function body, i.e. a None alternative.

func body ::= Body term concrete term (e.g. recursive function)
| Witness term string property, element name
| None no function body given

Finally, the sexp list→ sexp component is an interpretation function, which is used
in the definition of the semantics. These interpretation functions specify what
meaning the semantics is to assign to applications of user-defined functions.

The end of the next section defines a well-formedness criteria which relates the
interpretation functions with the syntax in func body.

8.3 Semantics

Next, we define a semantics of Milawa’s formulas. In this section we start with
the top-level definition before explaining the auxiliary definitions. The top most
definition defines when a Milawa formula is valid: a Milawa formula p is valid,
written |=π p, if and only if p is syntactically correct w.r.t. the context π and p

evaluates to true in context π for all variable instantiations i.

(|=π p) = formula okπ p ∧ ∀i. eval formula i π p

We define evaluation of formulas, i.e. eval formula i π, as follows using a function
for evaluation of terms, i.e. eval term i π. The syntax overloading can be confusing
in the following definition. On the left-hand side ¬, ∨ and = are the constructors
for the formula type, while on the right-hand side ¬ and ∨ are the usual Boolean
connectives and = is the equality predicate (over the sexp type, in this case).

eval formula i π (¬p) = ¬(eval formula i π p)
eval formula i π (p ∨ q) = eval formula i π p ∨ eval formula i π q

eval formula i π (x = y) = (eval term i π x = eval term i π y)

We define term evaluation w.r.t. a specific variable instantiation i next. Here
[[v0, . . . , vn] 7→ [x0, . . . , xn]] is a function which maps vi to xi, for 0 ≤ i < n, and all

The reflective Milawa theorem prover is sound 35

other variable names to NIL. Below map is a function such that map f [t0, . . . , tn] =
[f t0, . . . , f tn].

eval term i π (Const c) = c

eval term i π (Var v) = i(v)
eval term i π (App f xs) = eval app (f,map (eval term i π) xs, π)
eval term i π (LambdaApp vs x xs) = let ys = map (eval term i π) xs in

eval term [vs 7→ ys] π x

Application of a function to a list of concrete arguments, a list of type sexp list, is
evaluated according the following eval app function. This function evaluates prim-
itive functions according to eval primitive and user-defined functions according to
the interpretation function interp stored in the logical context. The interpretation
functions will be explained further below.

eval app (PrimitiveFun p, args, π) = eval primitive p args

eval app (Fun name, args, π) = let (, , interp) = π(name) in

interp(args)

We omit the definition of eval primitive, which is lengthy and straightforward,
but note that it is a total function. A few example evaluations:

eval primitive Add [Val 2,Val 3] = Val 5
eval primitive Add [Val 2, Sym "a"] = Val 2
eval primitive Cons [Val 2, Sym "a"] = Dot (Val 2) (Sym "a")

The definitions above constitute the semantics of Milawa. Clearly, this se-
mantics is intimately dependent on the interpretation functions stored inside the
context π. In order to make sure that these interpretation functions are ‘the right
ones’, i.e. correspond to the syntactic definitions of the user-defined functions,
we require that the context is well-formed, i.e. satisfies a predicate we will call
context ok.

For a context to be well-formed, any user-defined functions with an entry of
the following form in the logical context π,

π(name) = (formals,Body body , interp)

must have the interp function return the same value as an evaluation of body

with appropriate instantiations of the formal parameters, i.e. the following defining

equation must be true:

∀i. interp(map i formals) = term i π body

Note that this is a non-trivial equation since term, which appears on the right-hand
side of the equation, can refer to interp via app. Indeed, proving soundness of the
definition principle boils down to showing that the termination obligations always
imply that such an interpretation function exists (Section 8.6).

A similar condition applies to witness functions. If

π(name) = (formals,Witness prop var , interp)

is true then the following implication must hold. This implication states that if
there exists some value v that makes prop true when variable names var :: formals

36 Jared Davis, Magnus O. Myreen

are substituted for values v :: args in prop, then interp(args) returns some such v.
Here the test for ‘is true’ is Lisp’s truth test, i.e. ‘not equal to NIL’.

∀args.

(∃v. term [var :: formals 7→ v :: args] π prop 6= NIL) =⇒
term [var :: formals 7→ interp(args) :: args] π prop 6= NIL

The well-formedness criteria for contexts puts no restrictions on the interp function
if the function body is None.

The full definition of the well-formedness criteria for contexts, context ok, is
given below. Here free vars is a function that computes the list of free variables of
a term, and list to set converts a list to a set.

context ok π =
(∀name formals body interp.

(π(name) = (formals,Body body , interp)) =⇒
term okπ body ∧ all distinct formals ∧
list to set (free vars body) ⊆ list to set formals ∧
∀i. interp(map i formals) = term i π body) ∧

(∀name formals prop var interp.

(π(name) = (formals,Witness prop var , interp)) =⇒
term okπ prop ∧ all distinct (var :: formals) ∧
list to set (free vars prop) ⊆ list to set (var :: formals) ∧
∀args.

(∃v. term [var :: formals 7→ v :: args] π prop 6= NIL) =⇒
term [var :: formals 7→ interp(args) :: args] π prop 6= NIL)

8.4 Inference Rules

Our top-level soundness theorem states that the kernel’s implementation is sound
w.r.t. the semantics of the Milawa logic, as defined above. In this section, we
formalise the syntactic inference rules that Milawa’s implementation uses for proof
checking. We also explain how we have proved that these inferences rules are sound
w.r.t. the semantics.

We use HOL to formlise the inferences rules as an inductively defined relation
`π. Judgments are of the form `π formula, where π is the logical context. Our
formalization of the logic has 13 inference rules. The simplest six are listed below.
Here formula ok is used to ensure that all derivable judgments are syntactically
correct.

`π a ∨ (b ∨ c)
`π (a ∨ b) ∨ c (associativity)

`π a ∨ b `π ¬a ∨ c
`π b ∨ c

(cut)

`π a ∨ a
`π a

(contraction)
formula okπ a `π b

`π a ∨ b
(expansion)

formula okπ a

`π ¬a ∨ a
(prop. schema)

a ∈ milawa axioms

`π a
(basic axiom)

Above, milawa axioms is a set consisting of the 56 axioms from Davis [6]. Most of
these are basic facts about the primitive functions, e.g. term equality is reflective,
symmetric and transitive; the Less primitive is anti-reflective and transitive etc.

The reflective Milawa theorem prover is sound 37

The inference rule for functional equality is defined using an auxiliary function
which expands into disjunctions of inequalities:

neqs [(x1, y1), . . . , (xn, yn)] z = ¬(x1 = y1) ∨ . . . ∨ ¬(xn = yn) ∨ z

Functional equality is formalised as follows, using map as described earlier and fst

and snd such that fst (x, y) = x and snd (x, y) = y.

formula okπ (neqs l (App f (map fst l) = App f (map snd l)))

`π neqs l (App f (map fst l) = App f (map snd l))

The next inference rules require substitution through terms and formulas,
term sub σ t and formula sub σ a, where σ is a list of pairs (var , exp). Note that
substitution does not go into the body of lambda expressions because substitu-
tion will only be applied to terms that satisfy term ok, i.e. terms where all of the
variables in the body of the lambda terms are bound by the lambda.

lookup (v, [], r) = r

lookup (v, (var , exp) :: σ, r) = if v = var then exp else lookup (v, σ, r)

term sub σ (Const c) = Const c

term sub σ (Var v) = lookup (v, σ,Var v)
term sub σ (App f xs) = App f (map (term sub σ) xs)
term sub σ (LambdaApp vs x xs) = LambdaApp vs x (map (term sub σ) xs)

formula sub σ (¬p) = ¬(formula sub σ p)
formula sub σ (p ∨ q) = formula sub σ p ∨ formula sub σ q

formula sub σ (x = y) = term sub σ x = term sub σ y

Milawa’s inference rules for instantiation and beta reduction require that no ill-
formed terms are introduced; that’s why they mention formula ok.

`π a formula okπ (formula sub σ a)

`π (formula sub σ a)
(instantiation)

formula okπ (LambdaApp xs a ys = term sub (zip (xs, ys)) a)

`π LambdaApp xs a ys = term sub (zip (xs, ys)) a
(beta red.)

The next rule is the most exotic inference rule: base evaluation. This rule lets
us apply primitive Lisp functions to constant S-expressions. Here eval primitive is
the function, mentioned in the previous section, that evaluates Lisp primitives.

arity op = length args

`π App (PrimitiveFun op) (map Const args) =
Const (eval primitive op args)

(base eval.)

Milawa’s most sophisticated rule enables induction w.r.t. less-than over the
ordinals up to ε0. The rule Milawa adopts is similar to the induction rule of ACL2,
and Chapter 6 of Kaufmann, et. al [2] nicely introduces this rule. Here ordp and
ord less abbreviate applications of primitives Ordp and Ord less,

ordp m = App (PrimitiveFun Ordp) [m]
ord less m n = App (PrimitiveFun Ord less) [m,n]

38 Jared Davis, Magnus O. Myreen

and or list [x0, x1, . . . , xn] = x0∨x1∨ . . .∨xn. The free variables are: the conclusion
formula f ; the measure function m, represented as a single expression with free
variables; and the list of induction hypothesis qs, each hypothesis is represented
as a pair: a case expression and lists of substitutions to f (each substitution must
decrease the measure m).

`π ordp m = T

`π or list (f :: map fst qs)
(∀q ss. mem (q, ss) qs =⇒

`π or list (f :: ¬q :: map (λs. ¬(formula sub s f)) ss))
(∀q ss s. mem (q, ss) qs ∧mem s ss =⇒

`π ¬q ∨ (ord less (term sub s m) m = T))

`π f

The final two inference rules allow function definitions to be looked up from the
logical context. The following rule lets us use functions that have a conventional
defining equation.

π(name) = (formals,Body body , interp)

`π App (Fun name) (map Var formals) = body

Witness functions give rise to judgments that mimic the implication they represent
in the semantics (as part of context ok). The following inference rule can be read
as follows: for any instantiation i of the free variables var :: vs which make body

true, i.e. not equal to NIL, the function called name returns, when applied to vs

instantiated according to i, some value for var such that body is true, i.e. not equal
to NIL.

π(name) = (vs,Witness body var , interp)

`π body = NIL∨
¬(LambdaApp (var :: vs) body

(App (Fun name) (map Var vs) :: map Var vs) = NIL)

8.5 Soundness and Consistency

We state the soundness theorem for Milawa’s inference rules as follows:

∀π p. context ok π ∧ (`π p) =⇒ (|=π p)

We have proved this statement by induction over the inference rules `π. Proving
soundness of the induction rule was the most interesting case: this proof required
induction over the ordinals up to ε0, for which we need to know that less-than over
these ordinals is well-founded. Fortunately, Kaufmann and Slind [40] had already
formalized this result in HOL4. The soundness of the induction rule follows almost
directly from their result.

The above soundness theorem lets us immediately prove many reassuring corol-
laries. For instance, since |=π T = NIL is false, we know that this formula cannot be
proved using any combination of Milawa’s inference rules `π. Milawa’s inference
rules are consistent, since we can also prove that there exists true formulas: e.g.
`π T = T.

The reflective Milawa theorem prover is sound 39

8.6 Soundness Preserved by Function Definitions

As part of our verification of Milawa’s kernel (Section 10), we have proved that
the kernel maintains an invariant which states that the current logical context π
is well-formed,

context ok π (1)

and that all theorems the Milawa theorem prover has accepted are provable using
the inference rules based on that current context π, i.e. for any formula p accepted
by the kernel, we have:

`π p (2)

However, when new definitions are made the logical context is extended. In order
to maintain our invariant we must thus show that properties (1) and (2) carry
across past context extensions.

Proving that property (2) carries over when the context is extended is straigh-
foward since the syntactic inference rules only make simple tests for inclusion in
the context. We can freely assign a meaning to a previously unused names, as
the following theorem states: if π′ is an extension of π with a new name, i.e.
π′ = π[name 7→ value] for some value, then:

name 6∈ domain π =⇒ ∀p. (`π p) =⇒ (`π′ p)

This theorem is trivial to prove by rule induction over `π.

Proving that well-formedness of the context, i.e. property (1), carries across
inclusion of new definitions is less straighforward. The main complication is that we
need to find an interpretation for the new function such that this interpretation
agrees with the syntax of the new definition. In fact, for our overall soundness
theorem we only need to know that some such well-formed interpretation exists.
Thus we state the theorem for preservation of property (1) to say: if the current
context π is well-formed (context ok) and the new definition satisfies definition ok,
which will be explained below, then there exists an interpretation interp for the
new definition such that the updated context is well-formed.

∀π name formals body .

context ok π ∧ definition ok (name, formals, body , π) =⇒
∃interp. context ok (π[name 7→ (formals, body , interp)])

(3)

In what follows, we will explain how we proved theorem (3), but first let’s take a
brief look at the definition of definition ok. Figure 3 lists its formal definition which
states that: the function name is unused in the current context; the list of formal
parameters does not contain duplicates; the body of the definition is syntactically
well-formed; and, in case the new function is recursive, its termination obligations
must have been proved in an intermediate context extended with the name of the
new function but not its definition. Section 8.6.2 will explain, through an example,
the lengthy definition of the function which generates the termination obligations,
i.e. termination obligations.

40 Jared Davis, Magnus O. Myreen

([] ++ ys) = [] flat [] = []
((x :: xs) ++ ys) = x::(xs++ ys) flat (x :: xs) = x++ flat xs

callmap sub ss zs =
map (λ(xs, ys). (map (term sub ss) xs,map (term sub ss) ys)) zs

callmap name (Const c) = []
callmap name (Var v) = []
callmap name (App (PrimitiveFun If) [x0, x1, x2]) =

callmap name x0 ++
map (λ(x, y). (x, x0::y)) (callmap name x1) ++
map (λ(x, y). (x,App (PrimitiveFun Not) [x0]::y)) (callmap name x2)

callmap name (App f xs) =
if f = Fun name then (xs, [])::flat (map (callmap name) xs)

else flat (map (callmap name) xs)
callmap name (LambdaApp vs x xs) =

flat (map (callmap name) xs) ++
callmap sub (zip (vs, xs)) (callmap name x))

progress obligation m formals (xs, ys) =
or list ((ord less (term sub (zip (formals, xs)) m) m = T)::

map (λy. (y = NIL)) ys)

termination obligations name body formals measure =
if callmap name body = [] then [] else ((ordp measure = T)::

map (progress obligation measure formals) (callmap name body))

definition ok (name, formals,None, π) =
name 6∈ domain π ∧ all distinct formals

definition ok (name, formals,Witness body var , π) =
name 6∈ domain π ∧ all distinct (var :: formals) ∧ term okπ body ∧
list to set (free vars body) ⊆ list to set (var :: formals)

definition ok (name, formals,Body body, π) =
name 6∈ domain π ∧ all distinct formals ∧
let π′ = π[name 7→ (formals,None, arbitrary)] in

term okπ′ body ∧ list to set (free vars body) ⊆ list to set formals ∧
∃m. ∀p. mem p (termination obligations name body formals m)

=⇒ `π′ p

Fig. 3 Definition of definition ok and termination obligations.

8.6.1 Interpretations for Witness Functions

Per context ok (Section 8.3), the interpretation for witness functions must be a
function interp such that, if a value v exists for which a specific property is true,
then interp returns some value that makes that property true. The property is:

term [var :: formals 7→ v :: args] π prop 6= NIL

In higher-order logic (HOL), one can define a function which returns such a
v, if such a v exists, using Hilbert’s choice operator ε. Hilbert’s choice operator
allows us to write εv. P v to denote a value v such that P v is true, for a property
P (any function which returns a Boolean value, i.e. any instance of type α→ bool).
Hilbert’s choice operator satisfies the following axiom of HOL:

∀P. (∃v. P v) =⇒ P (εv. P v)

The reflective Milawa theorem prover is sound 41

HOL leaves the other case, i.e. ¬(∃v. P v), unspecified, i.e. one can think of εv. P v

as returning an arbitrary value of the correct type in case P is not true for any
input value.

In the proof that some interpretation function exists (3), we instantiate the
existential quantifier for the Witness case with the following function that uses
Hilbert’s choice operator.

λargs. εv. term [var :: formals 7→ v :: args] π prop 6= NIL

8.6.2 Interpretations for Recursive Functions

Constructing interpretations for recursive functions is more involved. We will ex-
plain our design choice using an example which also illustrates how termination
obligations are computed and why we included the None option for function bodies
in the logical context (Section 8.2). The example we will use is the definition of
the following function called f. Note that f makes a nested recursive call.

(f n k) = (if (< n 1)

k

(f (- n 1) (cons k (f (- n 1) nil))))

Calculation of the termination obligations first evaluates callmap "f" applied
to the right-hand side of the definition. This evaluation results in a list containing
information about the calls to f: both recursive calls can assume (not (< n 1)),
the first one is called with arguments (- n 1) and (cons k (f (- n 1) nil)),
and the second call with arguments (- n 1) and nil. Termination obligations are
generated based on this information. For the sake of this example, let’s assume the
user has supplied (+ n k) as the measure. With this measure the following three
termination obligations are generated. Here we write (q = T)∨ (p = NIL) as p =⇒ q.

(ordp (+ n k)) = T

(not (< n 1)) =⇒ (ord< (+ (- n 1) (. . . f . . .))) (+ n k))

(not (< n 1)) =⇒ (ord< (+ (- n 1) nil) (+ n k))

Note that these termination obligations mention the name of the function f

which is being defined. Thus, the proof of these termination obligations must be
performed in a context where the name f can appear, but its defining equation is
not yet available for use in proofs (because f is not yet defined). This awkward
intermediate form of the context is provided by the None-alternative for context
entries. The syntactic inference rules `π do not provide a way to use the defining
equation for None entries. A None-version of the new context is what is used in the
proofs of the termination obligations in the definition of definition ok (Figure 3).

We use the user’s proof of the termination obligations to show that some in-
terpretation of the Milawa-defined function always exists. We show, for all Milawa
function definitions for which the termination obligations have been proved, that
evaluation of the function in a deterministic big-step operational semantics for
the logic’s term-expressions terminates with a value for the function application.
We take the evaluation of this operational semantics to be the interpretation of
the Milawa function. We use Hilbert’s choice operator, described above, to define
this formally in HOL as follows. Here ⇓ap is the big-step operational semantics
explained below.

λargs. εresult . (name,Fun name, args, π) ⇓ap result

42 Jared Davis, Magnus O. Myreen

We omit the definition of ⇓ap , but note that it is a standard deterministic
big-step operational semantics for computing the value of the logic’s terms, if they
are treated as Lisp functions. The only quirk in this semantics is that function
calls to functions with names other than name are given special treatment: calls
to other functions are evaluated according to the interpretation function in the
context π. Evaluation of calls to name proceed in the normal manner: the body
of the function is expanded for evaluation. We have shown that a proof of the
termination obligations always implies that ⇓ap evaluates to some result , for any
args list of the correct length.

9 Specification of the Runtime

In order to prove that Milawa’s kernel (Section 5) is faithful Milawa’s logic (Sec-
tion 8), we need a formal specification of the programming language in which Mi-
lawa’s kernel is written. This section presents a formal specification, in terms of a
structured operational semantics, for the Lisp dialect that was outlined informally
in Section 5. Later sections describe how we have used this operational seman-
tics to show that Milawa’s kernel is faithful to the Milawa logic (Section 10), and
prove that the underlying Jitawa Lisp implementation correctly implement this
operational semantics (Section 12).

9.1 Syntax

The abstract syntax of Jitawa’s Lisp dialect is defined as shown in Figure 4. Note
that the core of this language is syntactically the same as the syntax of terms and
functions in Milawa’s logic, e.g. Const, Var and If match exactly. Indeed the type
for S-expressions sexp is borrowed from the definition of Milawa’s logic (Section 8).
However, this datatype adds a few new functions, Define, Print, Error and Funcall,
and macros, e.g. Defun which expands into an application of Define.

9.2 Evaluation Semantics

We define a big-step operational semantics as a inductive relation ev−→ that spec-
ifies how objects of type lterm evaluate. Following Common Lisp, we separate the
store k for functions from the environment env for local variables. We model the
I/O output stream io as a string, i.e. a list of characters produced as output. We
also include a error state component called ok : if ok is false at the end of the com-
putation then an error message interrupted the execution and the result can be
ignored. Our evaluation relation ev−→ explains how some t, of type lterm, may be
evaluated with respect to some particular k, env , io and ok to produce a resulting
ans, of type sexp, and an updated k′, io′ and ok ′.

As an example, the following rule shows how Var terms are evaluated. We only
permit the evaluation of bound variables, i.e. x ∈ domain env . Read the following
as saying that if x can be found in the environment then its value is read from the
environment.

x ∈ domain env

(Var x, env , k, io, ok) ev−→ (env(x), k, io, ok)

The reflective Milawa theorem prover is sound 43

lterm ::= Const sexp
| Var string
| App lfunc (lterm list)
| If lterm lterm lterm
| LambdaApp (string list) lterm (lterm list)
| Or (lterm list)
| And (lterm list) (macro)
| List (lterm list) (macro)
| Let ((string × lterm) list) lterm (macro)
| LetStar ((string × lterm) list) lterm (macro)
| Cond ((lterm × lterm) list) (macro)
| First lterm | Second lterm | Third lterm (macro)
| Fourth lterm | Fifth lterm (macro)
| Defun string (string list) sexp (macro)

lfunc ::= Define | Print | Error | Funcall
| PrimitiveFun lprim | Fun string

lprim ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less

Fig. 4 Abstract syntax of Jitawa’s Lisp dialect.

Our evaluation relation is defined inductively with auxiliary relations evl−→ for
evaluating a list of terms and ap−→ for applying functions. For instance, the fol-
lowing rule explains how a function (i.e., something of type lfunc) is applied: first
the arguments are evaluated using evl−→ , then the apply relation ap−→ determines
the result of the application.

(args, env , k, io, ok) evl−→ (vals, k′, io′, ok ′)
(f, vals, env , k′, io′, ok ′) ap−→ (ans, k′′, io′′, ok ′′)

(App f args, env , k, io, ok) ev−→ (ans, k′′, io′′, ok ′′)

User-defined functions can be applied, according to ap−→ , whenever a function
with the right number of parameters can be found in the function store k under
the given name.

k(name) = (formals, body) ∧ (length vals = length formals) ∧
(body , [formals ← vals], k, io, ok) ev−→ (ans, k′, io′, ok ′)
(Fun name, vals, env , k, io, ok) ap−→ (ans, k′, io′, ok ′)

Our Lisp implementation, Jitawa, performs dynamic compilation. With regards
to dynamic compilation, an interesting case is how user-defined functions are intro-
duced. New definitions can simply be added to the function store k by evaluation
of Define. Any attempt at overwriting existing definitions, i.e. name ∈ domain k,
causes an error.

ok ′ = (ok ∧ name 6∈ domain k) ∧ k′ = k[name 7→ (formals, body)]

(Define, [name, formals, body], env , k, io, ok) ap−→ (nil, k′, io, ok ′)

In Jitawa’s implementation, an application of Define compiles the expression
body into machine code. Notice how nothing in the above rule requires that it
should be possible to evaluate the expression body at this stage. In particular, the

44 Jared Davis, Magnus O. Myreen

functions mentioned inside body might not even be defined yet. This means that
compilation of function calls within body depend on the compile-time state: if the
function to be called is already defined we can use a direct jump/call to its code,
but otherwise we use a slower, dynamic jump/call.

Strictly speaking, Milawa does not require that Define is to be applicable to
functions that cannot be evaluated. However, we decided to allow such definitions
to keep the semantics clean and simple. An advantage of allowing compilation of
calls to not-yet-defined functions is that we can immediately support mutually
recursive definitions, e.g.:

(define ’even ’(n) ’(if (equal n ’0) ’t (odd (- n ’1))))

(define ’odd ’(n) ’(if (equal n ’0) ’nil (even (- n ’1))))

When the expression for even is compiled, the compiler knows nothing about the
function odd and must thus insert a dynamic jump to the code for odd. But when
odd is compiled, even is already known and the compiler can insert a direct jump
to the code for even.

Jitawa’s input language includes a number of macros And, Let, Cond, First etc.
These simply evaluate to their macro expansion. For example, First expands to an
application of the Car primitive function.

(App (PrimitiveFun Car) [x], env , k, io, ok) ev−→ (ans, k′, io′, ok ′)
(First x, env , k, io, ok) ev−→ (ans, k′, io′, ok ′)

Most of Jitawa’s macros mimic standard Common Lisp macros. The odd one out
is Defun, which is a primitive function in Common Lisp. In Jitawa, Defun is a
macro that expands to a quoted call to Jitawa’s primitive definition mechanism
Define. Using defun, we can write the above definitions of even and odd without
the quotes that were used above.

(defun even (n) (if (equal n ’0) ’t (odd (- n ’1))))

(defun odd (n) (if (equal n ’0) ’nil (even (- n ’1))))

The semantics of Defun is an expansion into Define applied to appropriate Const

arguments.
Other ev−→ rules of interest are evaluation of Funcall, Print and Error. Dynamic

function calls can be performed using Funcall, which has a semantics that is exactly
the same as that of Fun except that it reads the name of the function to be called
from the list of arguments.

(Fun name, vals, env , k, io, ok) ap−→ (ans, k′, io′, ok ′)
(Funcall,name :: vals, env , k, io, ok) ap−→ (ans, k′, io′, ok ′)

An evaluation of Print appends to the output stream a string representation of the
arguments passed to Print:

io′ = io ++ sexp2string (list2sexp (Sym "PRINT" :: vals))

(Print, vals, env , k, io, ok) ap−→ (nil, k, io′, ok)

An evaluation of Error prints its arguments just like Print, except that it also sets
the ok flag to false to indicate that execution was interrupted.

io′ = io ++ sexp2string (list2sexp (Sym "ERROR" :: vals))

(Print, vals, env , k, io, ok) ap−→ (nil, k, io′, false)

The reflective Milawa theorem prover is sound 45

Once the ok flag has become false, the ok flag will forever be stuck at false and the
other state components may change arbitrarily. For example, the following rule
states that any function application when ok is false can result in any result ans

as long as ok remains false.

k(name) = (formals, body) ∧ (length vals = length formals)

(Fun name, vals, env , k, io, false) ap−→ (ans, k, io, false)

We omit the rest of the definition of the semantics since the other cases (If,
Car, Second etc.) are largely standard and follow the style described above.

9.3 Parsing and Printing

So far, our semantics deals only with abstract syntax. The real implementation
must, of course, deal with real ASCII syntax. We model our parsing and printing
algorithms at an abstract level in HOL as two functions, sexp2string and string2sexp,
which convert S-expressions into strings and vice versa. The printing function is
trivial. Parsing is more complex, but we can gain some assurance our specification
is correct by proving it is the inverse of the printing function, i.e.

∀s. string2sexp (sexp2string s) = s.

Unfortunately, Jitawa’s true parsing algorithm must be slightly more compli-
cated. It must handle the #1=-style abbreviations described in Section 7.4. Also,
the parser we verified in previous work [39] assumed the entire input string was
present in memory, but since Jitawa’s input may be gigabytes in size, we instead
want to read the input stream incrementally. We define a function,

next sexp : string → sexp × string ,

that only parses the first S-expression from an input string and returns the unread
part of the string to be read later.

We can prove a similar inverse theorem for next sexp via a printing function,
abbr2string, that prints a list of S-expressions, each using some abbreviations a.
That is, we show next sexp correctly reads the first S-expression, and leaves the
other expressions for later:

∀s a rest . next sexp (abbr2string ((s, a)::rest)) = (s, abbr2string rest)

9.4 Specification of Read-Eval-Print Loop

We give our top-level specification of what constitutes a valid Jitawa execution
as an inductive relation, exec−→ . Each execution terminates when the input stream
ends or contains only whitespace characters.

is eof input = (true, rest)

(input , k, output) exec−→ (output , true)

46 Jared Davis, Magnus O. Myreen

Otherwise, the next S-expression is read from the input stream using next sexp,
this S-expression s is then evaluated according to ev−→ , and finally the result of
evaluation, ans, is appended to the output stream before execution continues.

is eof input = (false, input ′)∧
next sexp (input ′) = (s, rest)∧
(sexp2term s, [], k, output , true) ev−→ (ans, k′, output ′, ok ′)∧
output ′′ = output ′ ++ (sexp2string ans) ++ "\n"∧
(rest , k′, output ′′, true) exec−→ (output ′′′, ok ′′)

(input , k, output) exec−→ (output ′′′, ok ′ ∧ ok ′′)

10 Proving Faithfulness to the Logic

Now that we are equipped with a formal specification of the underlying Jitawa Lisp
implementation (Section 9) and a formal model of the Milawa logic (Section 8),
we can turn to the problem of proving that the code for Milawa’s kernel is faithful
to the inference rules of the Milawa logic.

10.1 From ASCII to Shallow Embeddings in HOL4

The most immediate hurdle is the low-level nature of the specification of Jitawa’s
read-eval-print loop. This specification is stated in terms of parsing ASCII charac-
ters from an input stream and then evaluating them w.r.t. an operational semantics
defined in terms of inductive relations over a deep embedding. For purposes of ver-
ification it would be much more convenient to have Milawa’s kernel — a 2,000-line
functional program — represented directly as the equivalent logic functions (a
shallow embedding) in the logic, i.e. in HOL. In this section, we explain how we
have coded up a proof tool [41] which can perform this translation from deep to
shallow embeddings automatically and, at the same time, produce a proof that the
two representations really compute the same result w.r.t. Jitawa’s specification.

Before delving into the details of our proof tool, let’s have a closer look at the
problem. Below is the first and one of the simplest functions in the Milawa kernel.

(defun lookup-safe (a x)

(if (consp x)

(if (equal a (car (car x)))

(if (consp (car x))

(car x)

(cons (car (car x)) (cdr (car x))))

(lookup-safe a (cdr x)))

nil))

The top-level Jitawa semantics describes how S-expressions are to be parsed
from an input stream of ASCII characters and evaluated. To get the Milawa kernel
loaded into Jitawa, the definition of lookup-safe and the other kernel functions
are read into Jitawa as characters, parsed, and stored as definitions. So to verify
Milawa’s kernel, we really need to prove a property about how Jitawa interprets
this 2,000 line string of Lisp code.

The reflective Milawa theorem prover is sound 47

When Jitawa reads the ASCII definition of lookup-safe, it parses those lines
and, as far as its operational semantics is concerned, turns them into a datatype
of the form:

Defun "LOOKUP-SAFE" ["A", "X"] (Dot (Sym "IF") (. . .))

When Jitawa then evaluates this Defun expression, a definition for lookup-safe is
added to its list of functions. The new entry looks roughly like this:

function name: "LOOKUP-SAFE"

parameter list: "A", "X"

function body: If (App (PrimitiveFun Consp) [Var "X"])
(If (App (PrimitiveFun Equal) [...])

(If (App (PrimitiveFun Consp) [...] (...) (...))
(App (Fun "LOOKUP-SAFE") [...]))

(Const (Sym "NIL"))

Verifying programs directly w.r.t. this deep embedding is hopelessly tedious.
To avoid the manual effort involved, we developed a tool that automatically

translates these deep embeddings into shallow embeddings and, in the process,
proves that the shallow embeddings accurately describe evaluations of the deep
embeddings. The details of this tool are explained in the next section, but the net
effect of using it on lookup-safe is easy to see. The tool provides us with a simple
HOL function,

lookup safe a x = if consp x then

if a = car (car x) then

if consp (car x) then

car x

else cons (car (car x)) (cdr (car x))
else lookup safe a (cdr x)

else Sym "NIL"

and a theorem relating the deep embedding to the shallow embedding above. The
theorem is stated in terms of the application relation ap−→ of Jitawa’s semantics:

(Fun "LOOKUP-SAFE", [a, x], state) ap−→ (lookup safe a x, state)

Here state is Jitawa’s mutable state which has, e.g., the I/O output stream and
the list of function definitions. The state is not changed by lookup safe because
lookup-safe is a pure function. Extraction of impure functions is also possible, as
will be explained in Section 10.2.3.

10.2 Automatic Translation: Deep to Shallow Embeddings

When converting deep embeddings into shallow embeddings our tool’s task is to de-
rive a definition of a function, e.g. lookup safe, from a deep embedding LOOKUP-SAFE

and prove a connection between the two representations, e.g.

(Fun "LOOKUP-SAFE", [a, x], state) ap−→ (lookup safe a x, state)

48 Jared Davis, Magnus O. Myreen

The method by which we accomplish this has two phases. The first phase derives
a theorem of the following form, for some hypothesis and some expression. Here
expression has type sexp and body has type lterm.

hypothesis =⇒ (body , env , state) ev−→ (expression, state)

This derivation proceeds as a bottom-up traversal of the abstract syntax tree
for the body of the function we are extracting. At each stage a lemma is applied
to introduce the relevant syntax in body and, at the same time, construct the
corresponding shallowly embedded operations over the sexp type in expression.

The second phase defines a shallow embedding using expression as the right-
hand side of the definition and discharges (most of) the hypothesis using the in-
duction that arises from the termination proof for the shallow embedding.

There is no guess work or heuristics involved in this algorithm, which means
that well-written implementations can be robust.

10.2.1 Example: Append Function

An example will illustrate this algorithm. To keep our example clean of unnecessary
clutter, consider APPEND defined as follows.

(defun APPEND (x y)

(if (consp x)

(cons (car x) (APPEND (cdr x) y))

y))

For the first phase, we aim to derive a theorem describing the effect of evaluating
the body of the APPEND function, i.e.

If (App (PrimitiveFun Consp) [Var "X"])
(App (PrimitiveFun Cons) [. . . ,App (Fun "APPEND") [. . .]])
(Var "Y")

(4)

Our bottom-up traversal starts at the leaves and works its way up the syntax
tree. At the leaves, we have variable look-ups and thus instantiate v to "X" and
"Y" in the following lemma to get theorems describing the leaves of the program.

v ∈ domain env =⇒ (Var v, env , state) ev−→ (env v, state)

Now that we have theorems describing the leaves, we can move upwards and
instantiate lemmas for primitives, e.g. we instantiate a lemma for the Cdr primitive
using Modus Ponens against:

(hyp =⇒ (x, env , state) ev−→ (exp, state)) =⇒
(hyp =⇒ (App (PrimitiveFun Cdr) [x], env , state) ev−→ (cdr exp, state))

When we encounter the recursive call to APPEND we, of course, do not have a descrip-
tion yet. In this case, we insert a theorem where hypothesis makes the assumption
that some function variable append , of type sexp → sexp → sexp, describes this
application.

(Fun "APPEND", [x, y], state) ap−→ (append x y, state) =⇒
(Fun "APPEND", [x, y], state) ap−→ (append x y, state)

The reflective Milawa theorem prover is sound 49

The result of the first phase is a theorem of the form

hypothesis =⇒ (body , env , state) ev−→ (expression, state)

Here body is the abstract syntax tree for the body of APPEND; and expression is the
following, if env = {"X" 7→ x, "Y" 7→ y},

if consp x 6= nil then

cons (car x) (append (cdr x) y)
else y

(5)

and, with the same env instantiation, hypothesis is:

consp x 6= nil =⇒
(Fun "APPEND", [cdr x, y], state) ap−→ (append (cdr x) y, state)

Next, we enter the second phase: we define append so that its right-hand side is
(5) with append replaced by the logical constant append. As part of the straight-
forward termination proof for this definition, we get an induction principle

∀P.
(∀x y. (consp x 6= nil =⇒ P (cdr x) y) =⇒ P x y) =⇒
(∀x y. P x y)

(6)

which we will use to finalise the proof of the certificate theorem.
For the running example, let P abbreviate the following.

λx y. (Fun "APPEND", [x, y], state) ap−→ (append x y, state)

We now restate the result of phase one using P and the definition of append, and
arrive at:

∀x y. (consp x 6= nil =⇒ P (cdr x) y) =⇒
(body, {"X" 7→ x, "Y" 7→ y}, state) ev−→ (append x y, state)

(7)

Let code for append in state state that the deep embedding (4) is bound to the name
APPEND and parameter list ["X", "Y"] in state. Now the operational semantics’ rule
for function application (Section 9.2) gives us the following lemma.

∀x y. (body, {"X" 7→ x, "Y" 7→ y}, state) ev−→ (append x y, state)
∧ code for append in state =⇒ P x y

(8)

By combining (7) and (8) we can prove:

∀x y. code for append in state =⇒
(consp x 6= nil =⇒ P (cdr x) y) =⇒ P x y

(9)

And a combination of (6) and (9) gives us:

∀x y. code for append in state =⇒ P x y (10)

An expansion of the abbreviation P shows that (10) is the certificate theorem
we were to derive for APPEND: it states that the shallow embedding append is an
accurate description of the deep embedding of the APPEND function.

∀x y state.

code for append in state =⇒
(Fun "APPEND", [x, y], state) ap−→ (append x y, state)

(11)

50 Jared Davis, Magnus O. Myreen

10.2.2 Example: Reverse Function

Now consider an implementation for REVERSE which calls APPEND. In the first phase
of the translation, the certificate theorem for APPEND (11) can be used to give a
behaviour to Fun "APPEND". The second phase follows the above proof very closely.
The result is the following shallow embedding,

reverse x = if consp x 6= nil then

append (reverse (cdr x)) (cons (car x) nil)
else nil

and a similar certificate theorem:

∀x state.

code for reverse in state =⇒
(Fun "REVERSE", [x], state) ap−→ (reverse x, state)

Here code for reverse in state also requires that code for APPEND is present.

10.2.3 More Advanced Language Features

The most advanced feature our Lisp language supports is dynamic function calls
using Funcall: the name of the function to be called is the first argument to Funcall

(Section 9.2). The equivalent in ML is a call to a function variable. The difference
is that Funcall is potentially unsafe, e.g. if called with an invalid function name
or with the wrong number of arguments. (ML’s type system prevents such unsafe
behaviour in ML.) We can support Funcall as follows. First two definitions:

funcall ok args state = ∃v. (Funcall, args, state) ap−→ (v, state)
funcall args state = εv. (Funcall, args, state) ap−→ (v, state)

We use the following lemma in the first phase of the translation algorithm whenever
Funcall is encountered.

funcall ok args state =⇒ (Funcall, args, state) ap−→ (funcall args state, state)

The result from phase two is a certificate theorem containing a side-condition
which collects the hypothesis that the induction is unable to discharge, e.g. if we
were translating a function CALLF that uses Funcall then we get:

∀x state.

code for callf in state ∧ callf side x state =⇒
(Fun "CALLF", [x], state) ap−→ (callf x state, state)

So far, we have only considered pure functions, i.e. functions that don’t alter
state. Impure functions are also supported: they translate into shallow embeddings
that take the state as input and produce a result pair: the return value and the new
state. For example, Milawa’s main loop handles def events using a function called
ADMIT-DEFUN, which is an inpure function. Extraction of ADMIT-DEFUN produces a
certificate of the form:

(Fun "ADMIT-DEFUN", [cmd , s], state) ap−→ (admit defun cmd s state)

The reflective Milawa theorem prover is sound 51

The two-phase algorithm outlined above works almost exactly the same way
for these impure functions. The only difference is that the expression which is
accumulated in phase one now covers both the return value and the return state,
i.e. expression returns a pair.

hypothesis =⇒ (body , env , state) ev−→ expression

The HOL functions that result from translations of impure functions tend to be
less readable than those resulting from pure functions. The reason for this is that
the implicit state that is carried around in the impure functions becomes explicit in
the resulting shallow embeddings. Use of a state-monad in the extracted functions
could possibly bring back some of the readability.

10.3 Verifying Milawa’s Proof Checkers and Reflection

Once the entire Milawa kernel had been translated into shallow embeddings as de-
scribed above, we turned our attention to verifying the faithfulness of the functions
in Milawa’s kernel.

The largest and most important pure function in Milawa is its initial proof
checker, logic proofp (Section 5.2). This function checks alleged proofs, given an
appeal (an S-expression encoding of an alleged proof) it returns true or false (in
Lisp T or NIL, respectively). This proof checker walks through the appeal, checking
that each proof step is a valid use of some inference rule. Additional inputs are
axioms and thms which are lists of formulas that can be assumed to be theorem
in this proof; logic proofp also takes an arity table atbl as input.

When Milawa starts, it uses logic proofp to check alleged proofs of theorems and
termination obligations. But the kernel can later be told to start using some user-
defined function, say new-proofp, to check proofs. Typically new-proofp can accept
“higher level” proofs that use new inference rules beyond the “base level” rules
available in logic proofp. The kernel will only switch to new-proofp after establishing
its fidelity claim: whenever new-proofp accepts a high-level proof of φ, there must
exist a base-level proof of φ that logic proofp would accept. Thus the fidelity of
logic proofp is key to whether Milawa’s kernel is faithful to Milawa’s logic.

We have proved that logic proofp is faithful to the inference rules of the Milawa
logic (Section 8.4), i.e. we have proved

milawa faithful logic proofp

Here milawa faithful is defined to say that a checker , in this case logic proofp, is
faithful if, whenever it is given syntactically well-formed inputs (appeal syntax ok

and atbl ok) and lists thms and axioms where each element can be derived using
Milawa’s inference rules (thms inv), the conclusion of the alleged proof is provable
using the syntactic inference rules of the Milawa logic, if checker returns true (i.e.
returns something non-NIL in Lisp).

milawa faithful checker =
∀appeal axioms thms atbl .

appeal syntax ok appeal ∧ atbl ok π atbl ∧
thms inv π thms ∧ thms inv π axioms ∧
checker (a2sexp appeal) axioms thms atbl 6= Sym "NIL"

=⇒ `π conclusion of appeal

52 Jared Davis, Magnus O. Myreen

To accommodate the reflective installation of new proof checkers, the invariant
we describe in the next section requires that milawa faithful must always hold for
whatever function is the current proof checker. It turns out that Milawa’s checks
of the fidelity claim, that were explained in Section 5.4, are sufficient to show that
a new-proofp may only be installed when it satisfies the milawa faithful property,
i.e., reflection is sound.

10.4 Milawa’s Invariant

As it executes, Milawa’s kernel carries around state with several lists and mappings
that must be kept consistent. Its explicit state, state that explicitly carried around
as S-expression in the code, consists of:

– a list of axioms and definitions,
– a list of proved theorems,
– an arity table for syntax checks (e.g., are all mentioned functions defined? are

they called with the right number of arguments?),
– the name of the current proof checker, e.g. proofp, new-proofp, and
– a function table that lists all the definitions that have been given to the Lisp

runtime, and the names of functions that must be avoided since they have a
special meaning in the runtime, e.g. error, print, define, funcall.

There is also implicit state maintained within Jitawa’s semantics:

– its view of how functions have been defined,
– its input and output streams, and
– a special ok flag that says whether an error has been raised.

Finally, for our soundness proof, there is also logical state:

– a logical context π must also be maintained.

A key part of our proof is to formalize the invariant that relates these state
elements. The full definition including all auxiliary definitions is a few hundred
lines long and thus too long to list here. However, for the most part, the invari-
ant simply states the obvious dependencies and relationships between the state
components: for example, each entry in the function table (explicit state) must
have a corresponding entity inside the runtime (implicit state), and, since this is
a reflective theorem prover, each function in the logic (logical state) must have an
entry in the function table (explicit state).

Some details are not so straightforward. Each layer has its own abstraction
level, e.g. the kernel and runtime allow macros but these are expanded away in
the logic, and the function table uses S-expression syntax but the runtime’s specifi-
cation only stores an abstraction of this syntax (a more abstract datatype). There
are also some language mismatches: the logic has primitives (e.g. ordp and ord-<)
which are not primitive in the runtime, and the runtime has a few primitives that
are not part of the logic (e.g., funcall, print, error). To further complicate things,
some of the state components can seemingly lag behind: for reasons that will be
explained next, the function table starts off mentioning functions that have not
yet been defined in the logic. Such functions can only be defined using exactly the
definition given in the function table, otherwise the defining event, admit-defun

or admit-witness, causes a runtime error.

The reflective Milawa theorem prover is sound 53

The function table starts off out of sync with the logical context because of the
role logic.proofp plays in the switch events’ checks for the fidelity claim. The fi-
delity claim that the user must prove, in the Milawa logic, mentions logic.proofp,
which is part of Milawa’s kernel implementation. There was essentially a design
choice here: should the (rather long) definition of logic.proofp be part of the ax-
ioms in the Milawa logic? Both yes and no are workable design decisions. Choosing
to include the definition of logic.proofp as an axiom in the logic would have made
the kernel’s implementation and invariant neater, at the expense of introducing
some 90 definitional axioms to the definition of the Milawa logic that tie the logic
to this particular implementation of the Milawa kernel. The choice was made not

to include logic.proofp as definitional axioms in the logic and to, instead, use
the function table to force the user to introduce a definition of logic.proofp in
the logical state. In the current setup, the user must run through definitions that
exactly match the kernel’s internal representation of logic.proofp.

We proved each of the event handling functions, admit-defun, admit-switch

etc., maintains an invariant which ensures that all items in the axioms and thms

lists can be derived using the inference rules of Milawa’s logic (Section 8.4). As a
result, the kernel’s top-level event-handler loop also maintains this invariant.

10.5 Theorem: Milawa is Faithful to its Logic

Milawa’s kernel reads input, processes it, and then prints output that says whether
it has accepted the proofs and definitions it has been given. The original version
of the kernel [6] did not print out the formulas it has proved, but instead just
printed, e.g.,

(PRINT (457 VERIFY LEN-OF-REV))

to say that it had accepted event number 457, in this case a theorem named
LEN-OF-REV.

In order to make clearer what Milawa claims to have proved, we added a new
event, (admit-print φ), which causes φ to be printed if it has already been proved
as a theorem, or else fails. For instance, this new event might print:

(PRINT (THEOREM (PEQUAL* (+ A B) (+ B A))))

We formulate the soundness of Milawa as a guarantee about the possible out-
put: whatever the input, Milawa will only ever print such a THEOREM line for for-
mulas that are true w.r.t. the semantics |=π of the logic. More precisely, we first
define what an acceptable line of output is w.r.t. a given logical context π:

line ok (π, l) = (l = "NIL") ∨
(∃n. (l = "(PRINT (n . . .))") ∧ is number n) ∨
(∃φ. (l = "(PRINT (THEOREM φ))") ∧ context ok π ∧ |=π φ)

We then prove that Milawa’s top-level function, milawa main, only produces output
lines that satisfy line ok, assuming that no runtime errors were raised during exe-
cution, i.e., that ok is true. Here compute output (defined in Figure 5) is a high-level

54 Jared Davis, Magnus O. Myreen

defun ctxt π cmd =
returns π updated with new function definition based on cmd

witness ctxt π cmd =
returns π updated with new witness definition based on cmd

print thm n cmd =
let φ = car (cdr cmd) in

"(PRINT (THEOREM φ))"

print event number n cmd =
let x = car cmd in
let y = car (cdr cmd) in

"(PRINT (n x y))"

milawa command π cmd =
if car cmd = Sym "DEFINE" then (defun ctxt π cmd , []) else
if car cmd = Sym "SKOLEM" then (witness ctxt π cmd , []) else
if car cmd = Sym "PRINT" then (π, [(π, print thm cmd)]) else (π, [])

milawa commands π n cmds =
if consp cmds then [] else

let cmd = car cmds in
let l1 = [(π, print event number n cmd)] in
let (π, l2) = milawa command π cmd in
l1 ++ l2 ++ milawa commands π (n+1) (cdr cmds)

compute output cmds =
[([], "NIL"), ([], "NIL"), ([], "NIL"), ([], "NIL"), ([], "NIL")] ++ milawa commands [] 1 cmds

output string [] = ""
output string ((π, line)::xs) = line ++ "\n" ++ output string xs

Fig. 5 Annotated output lines produced by successful Milawa run.

specification of what π-annotated lines a successful execution produces as output.

∃ans k output ok.

milawa main cmds init state = (ans, (k, output , ok)) ∧
(ok =⇒ (ans = Sym "SUCCESS") ∧

let result = compute output cmds in

every line line ok result ∧
output = output string result)

This approach works in part because Jitawa’s print function, though used by Mi-
lawa’s kernel, is not made available in the Milawa logic. In other words, a user-
defined function can’t trick us into invalidly printing (PRINT (THEOREM . . .)).

This soundness theorem can be related back to the operational semantics of
Jitawa through the following theorem, which was automatically derived by our
tool for lifting deep embeddings into shallow embeddings:

∀cmds state.

code for milawa main in state ∧milawa main side cmds state =⇒
(Fun "MILAWA-MAIN", [cmds], state) ap−→ (milawa main cmds state)

The reflective Milawa theorem prover is sound 55

11 The Bottom Layer: the x86 Model

As mentioned earlier, our final target is a proof which reaches down to the concrete
x86 machine code which runs our Jitawa Lisp runtime. In order to verify Jitawa
down to level of machine code, we required a specification of x86 instruction set
architecture (ISA). The ISA specification we use is a 64-bit port of a previously
developed [42] model of 32-bit x86.

Our ISA specification covers only a subset of the x86 instruction set architec-
ture. This ISA model includes the following instructions:

ADD ADC AND XOR OR SBB SUB CMP TEST INC DEC MOV MOVZX CMPXCHG XADD

XCHG NEG NOT POP PUSH CALL LEA SHL SHR SAR JMP JE JNE JS JNS JA JNA

JB JNB CMOVE CMOVNE CMOVS CMOVNS CMOVA CMOVNA CMOVB CMOVNB CPUID RET

LOOP LOOPE LOOPNE DIV MUL

We trust that our ISA specification is reasonably accurate for the small number
of instructions it covers. The 32-bit ISA specification from which this specification
originates was extensively tested against real x86 hardware. Our 64-bit port has
also been tested, but not as extensively.

Our specification of 64-bit x86 is a conventional ISA model providing a next-
state function which consists of fetch, decode and execute functions. The state
space consists of sixteen 64-bit registers (RAX, RBX, . . . , R15), six Boolean status
flags (CF, PF, AF, ZF, SF, OF), a flat unsegmented byte-addressable memory and
an instruction cache. The instruction cache is made explicit in order to model
the hazards that out-of-date instruction caches can cause when just-in-time or
dynamic compilation is performed [42].

An example will give a taste for what level of detail this x86-64 specification
captures. Below is a theorem which describes the precondition and the update an
execution of instruction add rbx,[rax] causes. Informally, this instruction loads
a 64-bit word from the address held in register RAX and adds the value from that
memory location to the RBX register. Our x86 ISA is a model of concrete machine
code and thus concerns the concrete byte encoding of this x86 instruction. The ma-
chine code encoding of add rbx,[rax] is 480318, i.e. bytes 0x48, 0x03 and 0x18. In
order for this instruction to be able to execute, these bytes must appear in memory
at the location where the program counter (instruction pointer) RIP is pointing,
and the 64-bit entity for which register RBX holds the address must be accessible.
If this precondition is true, then the value of RAX is updated, the program counter
is bumped along to point at the next instruction (hence +3 below), and the status
flags are updated according to the result of the arithmetic operation. Below all
arithmetic is over finite 64-bit words, and some x is used to indicate that value x
is accurate — as opposed to none which would mean undefined or unknown.

can read mem word64 (read reg RAX) s ∧
(read instr (read rip s) s = some 0x48) ∧
(read instr (read rip s+1) s = some 0x03) ∧
(read instr (read rip s+2) s = some 0x18)
=⇒
(x64 next s = some (write rip (read rip s+3)

(write reg RBX (read reg RAX+read mem word64 (read reg RAX))
(write flag ZF (read reg RAX+read mem word64 (read reg RAX)=0)
(write flag SF . . . CF . . . OF . . . PF . . . s . . .))))))

56 Jared Davis, Magnus O. Myreen

Clearly, this x86 model is working at a much lower level of abstraction than
Jitawa’s high-level specification, which, in contrast, concerns ASCII character
streams, abstract datatypes and infinite precision natural numbers.

12 Constructing and Verifying the Runtime

In this section, we describe how we have gone from the Jitawa language spec-
ification, Section 9, to an actual x86 implementation that has been proved to
implement Jitawa’s Lisp language. This part of our work builds on a long line of
previous work on machine-code verification [42,39,43]. However, the following text
will not assume knowledge of our previous work and will, for brevity, omit certain
details that the interested reader can find in the papers mentioned above.

12.1 Method

Our implementation of Jitawa consists of 8,200 lines of formally verified x86 ma-
chine code. Most of this code was not written and verified by hand. Instead, we
produced the implementation and its verification proof using a combination of
manual verification, decompilation and proof-producing synthesis. At a high-level,
these are the steps we followed:

1. We started by defining a straightforward stack-based bytecode language into
which we can easily compile Jitawa Lisp programs using a simple compilation
algorithm.

2. Next, we defined a heap invariant, which relates x86 states to abstract Lisp
states, and proved that certain machine instruction “snippets” implement basic
Lisp operations and maintain the heap invariant.

3. These snippets of verified machine code were then given to our extensible
synthesis tool [44] which we used to synthesise verified x86 machine code for
our compilation algorithm, i.e. we coded up the compilation algorithm as a
functional program from which that the synthesis tool can produce verified
x86 using the small verified snippets.

4. Next, we proved the concrete byte representation of the abstract bytecode in-
structions is in itself machine code which performs the bytecode instructions
themselves. Thus jumping directly to the concrete representation of the byte-
code program will correctly execute it on the x86 machine.

5. Finally, we verified code for the parsing/printing of s-expressions from in-
put/output streams and connected these up with compilation to produce a
“parse, compile, jump to compiled code, print” loop, which we have proved
implements Jitawa’s specification.

The next few sections describe each of these steps. Readers that are familiar with
our previous work [39] will notice that steps 2 and 3 correspond very closely to
how we synthesised verified machine-code for our evaluation function lisp eval when
constructing verified Lisp interpreters.

The reflective Milawa theorem prover is sound 57

bytecode ::= Pop pop one stack element
| PopN num pop n stack elements below top element
| PushVal num push a constant number
| PushSym string push a constant symbol
| LookupConst num push the nth constant from system state
| Load num push the nth stack element
| Store num overwrite the nth stack element
| DataOp prim add, subtract, car, cons, . . .
| Jump num jump to program point n
| JumpIfNil num conditionally jump to n
| DynamicJump jump to location given by stack top
| Call num static function call (faster)
| DynamicCall dynamic function call (slower)
| Return return to calling function
| Fail signal a runtime error
| Print print an object to stdout
| Compile compile a function definition

Fig. 6 Abstract syntax of our bytecode.

12.2 Compilation to Bytecode

Jitawa performs dynamic compilation, it compiles all expressions before they are
executed. In order to break this compilation into manageable stages, we compile
Jitawa terms to an intermediate language, which we will call a bytecode. This
bytecode is stack based. Its rather short list of instructions is shown in Figure 6.

We model our compilation algorithm as a HOL function that takes the name,
parameters, and body of the new function, and also a system state s. It returns
a new system state, s′, where the compiled code for body has been installed and
other minor updates have been made.

compile (name, formals, body , s) = s′

At this level of abstraction, a system state s consists of the following components:

– a code store: a list of bytecode instructions,
– a list of information describing where code for previously compiled functions

is stored,
– a list of non-atom constants (for use with LookupConst),
– input and output streams, and
– an ok flag indicating whether an error has occurred.

The compile function appends the new code to the end of the code store. At present,
compile does not perform any optimizations except for tail-call elimination and a
simple optimization that speeds up evaluation of LambdaApp, Let and LetStar.

In what follows, we will give a flavour of the operational semantics of this
bytecode. We model the execution of bytecode using an operational semantics
based on a next-state relation next−→ . For simplicity and efficiency, we separate the
value stack xs from the return-address stack rs; the next−→ relation also updates a
program counter pc and the system state s.

The simplest example of next−→ is the Pop instruction, which just removes an
element off the expression stack and advances the program counter to the next

58 Jared Davis, Magnus O. Myreen

instruction.

contains bytecode (pc, s, [Pop])

(top :: xs, rs, pc, s) next−→ (xs, rs, pc + length(Pop), s)

The instruction for performing a function call, Call, is not much more compli-
cated: Call pos changes the program counter to pos and push a return address onto
the return stack.

contains bytecode (pc, s, [Call pos])

(xs, rs, pc, s) next−→ (xs, (pc + length(Call pos)) :: rs, pos, s)

A DynamicCall is similar, but reads the name and expected arity n of the func-
tion to call from the stack, then searches in the current state to locate the position
pos where the compiled code for this function begins.

contains bytecode (pc, s, [DynamicCall]) ∧ find func (fn, s) = some (n, pos)

(Sym fn :: Val n :: xs, rs, pc, s) next−→ (xs, (pc + length(DynamicCall)) :: rs, pos, s)

The Print instruction is slightly more exotic: it appends the string representa-
tion of the top stack element, given by sexp2string (Section 9.3), onto the output
stream, which is part of the system state s. It leaves the stack unchanged.

contains bytecode (pc, s, [Print]) ∧ append to output (sexp2string top, s) = s′

(top :: xs, rs, pc, s) next−→ (top :: xs, rs, pc + length(Print), s′)

The most interesting bytecode instruction is, of course, Compile. This instruc-
tion reads the name, parameter list, and body of the new function from the stack
and updates the system state according to the compile function.

contains bytecode (pc, s, [Compile]) ∧ compile (name, formals, body , s) = s′

(body :: formals :: name :: xs, rs, pc, s) next−→ (nil :: xs, rs, pc + length(Compile), s′)

At first sight, it might seem odd that the definition of the operational semantics
mentions the compile function. We mention compile because that specifies unam-
biguously what an implementation of Compile must do.

Compile instructions are generated when we encounter an application of Define.
For instance, when the compiler sees an expression like

(define ’increment ’(n) ’(+ n ’1)),

it generates the following bytecode instructions (for some specific k):

PushSym "INCREMENT" pushes symbol increment onto the stack
LookupConst k pushes expression (n) onto the stack
LookupConst (k+1) pushes expression (+ n ’1) onto the stack
Compile compiles the above expression

The reflective Milawa theorem prover is sound 59

12.3 Jitawa’s Heap Invariant

The verification of Jitawa required several invariants at different layers of abstrac-
tion. Most of the interesting relationships between low-level and high-level objects
is specified in the ‘heap invariant’ which relates S-expressions and bytecode to val-
ues in various memory modelling functions and register contents. This invariant
has the form:

lisp inv constants abstract concrete

Here, constants is a tuple of values that parametrize the entire development, e.g. the
size of the heap, the location of the bottom of the stack etc. These are universally
quantified throughout. At this level, the abstract state consists of six S-expression
‘registers’, an S-expression stack, a stack for return addresses, ASCII I/O streams,
and a code store, i.e. a list of abstract bytecode instructions. The concrete state
consists of various 64-bit values (that will later be in registers) and a few memory
mapping functions (one for the heap and expression stack, one for the symbol table
and one for the code heap). The memory mapping functions map four-byte-aligned
64-bit addresses to 32-bit values.

The full details of lisp inv will not be presented here. However, a few key parts
will be explained. The lisp inv invariant states that there exists some heap function
h, a mapping from natural numbers to a datatype of heap objects. Heap objects
are either a Block, a Ref or a Empty cell. Values are either data (DataFixedNum or
DataSymIndex) or an address, HeapAddr. We define a relation lisp x to specify how
S-expression x are to relate to values v w.r.t. a specific heap function h and symbol
list syms.

lisp x (h, syms) (v, x)

An S-expression representing a natural number corresponds to a DataFixedNum

value. The number must be less than 230. (Jitawa reports an error if a larger
number is produced, e.g. via addition or through parsing.)

lisp x (h, syms) (v,Val n) = (v = DataFixedNum n) ∧ n < 230

S-expressions representing symbols correspond to a DataSymIndex value which holds
an index into the list of symbols.

lisp x (h, syms) (v,Sym s) = ∃n. (v = DataSymIndex n) ∧ n < 229∧
(list lookup n syms = s)

S-expressions that are a Dot pair are represented as an address into the heap. At
this address, the heap must contain a Block containing the representations of the
two sub-expressions.

lisp x (h, syms) (v,Dot x y) = ∃u w n. (v = HeapAddr n) ∧ (h n = Block (u,w)) ∧
lisp x (h, syms) (u, x) ∧ lisp x (h, syms) (w, y)

The lisp inv invariant relates the heap h, values v and symbols list syms to
the concrete memory mappings and 32-bit values. We represent each heap value
v as a 32-bit word that is appropriately tagged so that we can distinguish the
types at runtime. Block elements are mapped into the real memory as eight-byte-
aligned 64-bit entries, i.e. 32 bits for each component value that they carry. The

60 Jared Davis, Magnus O. Myreen

expression stack is represented as a simple array of value/sexp representations.
Runtime checks make sure that the stack pointer always points into this array.

Another important part of the lisp inv invariant is its specification of how ab-
stract bytecode instructions are represented in memory. We define bc ref to return
the concrete representation of bytecode instructions, given their concrete location
l. For example, the representation of the Pop instruction is defined to be repre-
sented by the following list of bytes.

bc ref l Pop = [0x44, 0x8B, 0x4, 0x9F, 0x48, 0xFF, 0xC3]

These bytes are encoded of x86 instructions, in this case mov R8d, [RDI+4*RBX]

followed by inc RBX, which implement the bytecode instruction in question, as will
be explained in Section 12.6. The lisp inv invariant states that the list of abstract
bytecode instructions is directly mapped into a list of bytes according to bc ref.
These bytes are stored in the mutable code heap.

12.4 Verification of x86 for Basic Lisp Operations

In order to prove that concrete x86 code implements Lisp operations w.r.t. our
x86 model from Section 11, we make use of a previously developed Hoare logic
for machine code [42,43]. The central concept in this Hoare logic is a judgement
which we call a machine-code Hoare triple. These machine-code Hoare triples take
the form:

{precondition} code {postcondition}

A few examples will give a feel for what they mean (a full definition is given
in [42]). The following Hoare triple describes the mov RBX, RAX instruction, which
is encoded as three bytes: 0x48, 0x8B, 0xD8. Read the following theorem as saying
that, if the program counter PC has a value p which points at this code, then the
value of RAX, i.e. rax , is moved into register RBX, i.e. replaces its original value
rbx . The operation also updates the program counter PC to point to the next x86
instruction, i.e. p+3 is stored into PC. Here ∗ is a separating conjunction from
separation logic (read it informally as normal conjunction) and all arithmetic is
over 64-bit words.

{ rax rax ∗ rbx rbx ∗ pc p }
p : 488BD8
{ rax rax ∗ rbx rax ∗ pc (p+3) }

These Hoare triples concern total-correctness, i.e. they state that execution of
the code terminates in a state where the postcondition is true whenever execution
started from a state satisfying the precondition. These machine-code Hoare triples
differ from conventional Hoare triples in that (i) the program counter is made
explicit in the pre- and postconditions, (ii) execution does not need to start at the
beginning of the code and exit at the end, and (iii) the executed code does not
need to live in the middle of the Hoare triple, as explained in [42].

To prove that certain snippets of x86 code implement Lisp operations we define
an invariant lisp which combines lisp inv from above with the x86-specific resource

The reflective Milawa theorem prover is sound 61

assertions rax, rbx etc.

lisp constants (x0 , x1 , x2 , . . .) =
∃w0 w1 w2

rax w0 ∗ rbx w1 ∗ rcx w2 ∗ . . .
〈lisp inv constants (x0 , x1 , x2 , . . .) (w0, w1, w2, . . .)〉

Equipped with this definition of lisp, we can state theorems about machine
code in terms of operations over sexp. The following theorem makes the above x86
mov instruction seem to be an operation over two S-expression registers: x0 and
x1. In what follows, we abbreviate lisp constants by lisp.

{ lisp (x0, x1, x2, . . .) ∗ pc p }
p : 488BD8
{ lisp (x0, x0, x2, . . .) ∗ pc (p+3) }

Proving such theorems for basic Lisp operations (e.g. moving, adding, subtract-
ing, comparing, pushing, popping S-expressions) is a simple exercise in using the
machine-code Hoare logic.

12.5 Synthesis of Code for Complex Lisp Functions

Once we had verified that certain snippets of x86 implement a number of basic Lisp
operations, we used the result of this verification to teach a previously developed
code synthesis tool [44] about Lisp. This synthesis tool takes the machine-code
Hoare triple theorems as input and learns from them how to synthesise certain
assignments and comparisons. For example, from the machine-code Hoare triple
shown above, it would know how to synthesise

let x1 = x0 in

into the x86 instruction C3C3. Given enough Lisp primitives, this synthesis tool can
compile HOL functions that operate over the sexp type directly into x86 machine
code.

For each run, the synthesis tool produces a certificate of correctness relating
the generated code to the given function. An example will illustrate the use of this
tool. Given the following function definition,

list member x0 x1 =
if ¬consp x1 then

let x2 = Sym "NIL" in (x0, x1, x2)
else if x0 = car x1 then

let x2 = Sym "T" in (x0, x1, x2)
else

let x1 = cdr x1 in list member x0 x1

the synthesis tool generates the following x86 code,

49 F7 C1 01 00 00 00 48 74 09 41 BA 03 00 00 00 48 EB 18 46 8B 14

8E 4D 39 D0 48 74 08 46 8B 4C 8E 04 48 EB DB 41 BA 0B 00 00 00

62 Jared Davis, Magnus O. Myreen

for which it also proves a theorem stating that this x86 code snippet implements
exactly list member. Here 43 is the length of the code and list member pre x0 x1 is
a termination condition.

list member pre x0 x1 =⇒
{ lisp (x0, x1, x2, x3, . . .) ∗ pc p }
p : 49F7C101 . . .
{ let (x0, x1, x2) = list member x0 x1 in

lisp (x0, x1, x2, x3, . . .) ∗ pc (p+43) }

The tool constructs such theorems and code by composing the verified snippets
of x86 that it has been given. It applies a loop rule, described in [43], to tie
together loops. We used this synthesis tool to generate correct x86 code from HOL
functions for parsing and printing of S-expressions and for compiling S-expressions
into bytecode.

12.6 From Bytecode to Machine Code

Great care was taken when defining the concrete representation of the bytecode
our compiler produces. The concrete representation of the bytecode was chosen to
be strings of bytes that are machine code in themselves. This machine code is, in
each case, an implementation of the bytecode instruction it represents. This means
that it is sufficient to perform an x86 jump to the representation of a bytecode
instruction sequence in order to execute that instruction sequence in x86.

In order to prove a Hoare triple stating that the bytecode representation is
indeed correct, we define an assertion lisp bytecode which specifies how the state
of the bytecode semantics maps into the lisp assertion from above. Here xs is
the expression stack; hd, tl and ++ are list-head, -tail and -append, respectively,
and n2w converts a natural number into a 64-bit word. Note that head of the
bytecode’s expression stack is kept in the x0 ‘S-expression register’ and the tail of
the bytecode’s expression stack in the regular S-expression stack.

lisp bytecode (xs, rs, pc, s) =
∃x1 x2 x3 x4.

lisp (hd (xs ++ [nil]), x1, x2, x3, x4, . . . ,
tl (xs ++ [nil]), . . .) ∗ pc (n2w pc)

With this state assertion we can state and prove that the concrete representa-
tion of, e.g., Pop, i.e. bc ref Pop, removes the top element from the stack.

{ lisp bytecode (top :: xs, rs, pc, s) }
n2w pc : bc ref Pop

{ lisp bytecode (xs, rs, pc + length Pop, s) }

We proved similar theorems for each of the bytecode instructions and then from
that that any string of bytecode instructions is executed by a jump to their concrete
representation.

The reflective Milawa theorem prover is sound 63

12.7 I/O

So far, we have glossed over how the machine code implementation deals with I/O.
Our Jitawa implementation calls upon the external C routines fgets and fputs to
carry out I/O. These external calls require assumptions in our proof. For instance,
for reading characters we assume that calling the routine at a certain location x—
which our unverified C program initializes to the location of fgets before invoking
the runtime—will:

1. produce a pointer z to a null-terminated string that contains the first n char-
acters of the input stream, for some n, and

2. remove these first n characters from the input stream.

We further assume that the returned string is only empty if the input stream was
empty. The machine-code Hoare triple representing this assumption is:

{ rax x ∗ rbx y ∗memory m ∗ io (x, in, out) ∗ pc p }
p : call rax

{ ∃z n. rax x ∗ rbx z ∗memory m′ ∗ io (x, drop n in, out) ∗ pc (p+ 3) ∗
〈string in mem at (z,m′, take n in) ∧ (n = 0 =⇒ in = "")〉 }

The fact that Jitawa implements an interactive read-eval-print loop is not
apparent from our top-level correctness statement: it is just a consequence of
reading lazily—our next sexp style parser reads only the first s-expression, and
fgets reads through at most the first newline—and printing eagerly.

12.8 Jitawa is Correct

The top-level correctness theorem is stated as the following machine-code Hoare
triple. If the Jitawa implementation is started in a state where enough memory is
allocated (init state) and the input stream holds s-expressions for which an execu-
tion of Jitawa terminates, then either a final state described by exec−→ is reached or
an error message is produced.

{ init state input ∗ pc pc ∗ 〈∃output ok . ([], input) exec−→ (output , ok)〉 }
pc : code for entire jitawa implementation

{ error message ∨ ∃output . 〈([], input) exec−→ (output , true)〉 ∗ final state output }

This specification allows us to resort to an error message even if the evaluated
s-expressions would have a meaning in terms of the exec−→ relation. This lets us
avoid specifying at what point implementation-level resource limits are hit. The
implementation resorts to an error message when Jitawa runs into an arithmetic
overflow, attempts to parse a too long symbol (more than 254 characters long), or
runs out of room on the heap, stack, symbol table or code heap.

64 Jared Davis, Magnus O. Myreen

13 Top-Level Soundness Theorem

Now that we have a theorem from Section 10 saying that the Milawa theorem is
faithful to the Milawa logic, and a theorem from Section 12 saying that Jitawa
correctly executes Milawa’s kernel, we can combine these into a single top-level
theorem proved in HOL. This top-level theorem states that when Milawa is run
on top of our verified runtime Jitawa, it can only produce output with lines that
show formulas that are true. These formulas are true w.r.t. the semantics of the
Milawa logic (see definition of line ok, Section 10.5).

The top-level theorem, shown below, can informally be read as follows. Suppose
the input to Jitawa is the code for Milawa’s kernel followed by a call to its main
function on any input . Such an invocation of Jitawa causes it to either abort with
an error message, or succeed and print some line ok output followed by SUCCESS.
Here strings are lists of characters, hence the use of list append (++) on strings.

∀input pc.

{ init state (milawa implementation ++ "(milawa-main ’input)") ∗ pc pc }
pc : code for entire jitawa implementation

{ error message ∨ (let result = compute output input in

〈every line line ok result〉 ∗
final state (output string result ++ "SUCCESS")) }

This theorem is a total-correctness theorem, in the sense that it guarantees that
Milawa will terminate, for all inputs, when run on Jitawa. However, it is partial
in that any execution is allowed to exit with an error message. Error messages are
caused by e.g. execution of the error function inside Jitawa, running out of heap
space or arithmetic overflow.

Note that the theorem above allows a trivial implementation of Jitawa which
simple exits immediately regardless of input. However, we can show by running Mi-
lawa that it is not a trivial exit-always implementation. Jitawa can run through Mi-
lawa’s entire bootstrapping process without hitting an error message. This shows
both that Jitawa is not a trivial implementation and that each proof performed
during Milawa’s bootstrapping process is indeed true w.r.t. our semantics of the
Milawa logic.

13.1 Two Minor Bugs Found

It is worth noting that no soundness bugs were found during our proof. However,
to our surprise, two minor bugs were uncovered and fixed. One was a harmless
omission in the initial function arity table. The other allowed definitions with
malformed parameter lists (not ending with nil) to be accepted as axioms. We
don’t see how these bugs could be exploited to derive a false statement, but the
latter could probably have lead to undefined behavior when using a Common Lisp
runtime to host Milawa.

Both of these bugs can be traced back to the original Milawa kernel and Davis’
dissertation [6], where the bugs even appear in the main text (pages 125–126
and 140, respectively). The existence of these bugs took us by surprise, since the
Milawa kernel was intentionally written to be simple, clean and obviously correct;

The reflective Milawa theorem prover is sound 65

and many careful people combed through the kernel’s code and the text of Davis’
dissertation. The existence of these bugs simply confirms that formal verification
does reveal bugs better than careful code reviews.

13.2 Extensions

Once we had completed the full soundness proof, we took the opportunity to step
back and consider what part of the system can be made better without compli-
cating the soundness proof. There were two immediate candidates.

Evaluation through reflection. In the original version of Milawa, reflection was
only used to execute new proof checkers. We can also, of course, use the reflected
functions for efficient evaluation of arbitrary constant terms. We have implemented
this as a new event admit-eval that provides a mechanism by which user-defined
functions can be evaluated in the runtime, given constant arguments. The result of
this evaluation is stored as a theorem, in the form of an equation, `π function name

’x1 ’x2 . . . ’xn = ’ans.
Support for partial functions. The fact that our semantics does not explicitly

require that functions terminate suggests it may be possible to support partial
functions in the Milawa logic. Indeed, it was easy to prove, with the current se-
mantics, that definitions of tail-recursive functions may be soundly admitted as
theorems without termination proofs. We proved that a variant of definition ok,
where the termination obligations have been replaced by a syntax check for tail-
recursion, is a sufficient condition to that the new context is well-formed. Our
approach to partial functions seem to have been simpler than the method de-
scribed by Manolios and Moore [45] on adding support for partial functions to
ACL2. Note that we only proved that it is sound to admit tail-recursive functions
without termination proofs. We did not add support for partial functions to Mi-
lawa’s kernel because doing so would have meant that Milawa’s kernel might not
terminate for all inputs. To keep our top-level theorem clean of clutter, we wanted
Milawa to terminate for all inputs.

14 Discussion of Related Work

Davis’ dissertation [6] describes how the Milawa theorem prover is constructed by
bootstrapping from a small trusted kernel. In this paper we have described the
Milawa theorem prover, Milawa’s trust story and how we have verified in HOL4
that Milawa is indeed trustworthy. We have proved that the implementation of
the Milawa theorem prover can never prove a statement that is false when it is
run on Jitawa, our verified Lisp runtime. This theorem goes from the logic all the
way down to the machine code, and we believe it is the strongest evidence to date
of a theorem prover’s soundness.

Harrison’s proofs [9] of soundness and consistency for the HOL Light theorem
prover are the most closely related work. He proved two theorems to demonstrate
the soundness of higher-order logic (HOL): he used a version of HOL with an
extra axiom to prove ordinary HOL consistent, and separately used ordinary HOL
to prove the consistency of HOL with one axiom removed. Our soundness proof
can be more direct, simply because HOL is a more expressive logic than Milawa’s

66 Jared Davis, Magnus O. Myreen

logic: we define the semantics of Milawa in HOL (which is also the logic HOL4
implements) and proved soundness and consistency directly in HOL.

Harrison developed a shallow embedding of HOL Light’s 400-line OCaml ker-
nel (except for its definitional mechanism), and proved soundness w.r.t. this im-
plementation. Our work goes further by proving a connection to an operational
semantics for our implementation language, and through that a connection to a
verified implementation of the language runtime.

Recently, Kumar et al. [46,47] have extended Harrison’s original formalisation
of HOL light, added definition mechanisms to the logical inferences, and produced a
verified CakeML [48] implementation of the kernel functions. This ongoing project
aims to prove an end-to-end soundness theorem for the HOL light theorem prover,
which is similar to our soundness theorem for Milawa. At the time of writing, Ku-
mar et al. have yet to prove that the soundness of the kernel implies the soundness
of the entire theorem prover.

Milawa’s logic is a simplified variant of the ACL2 logic. The ACL2 logic has
previously been modeled in HOL, most impressively by Gordon et al. [49,50]. In
this work, ACL2’s S-expressions and axioms are formalized as a shallow embedding
in HOL. ACL2’s axioms are proven to be theorems in HOL, and a mechanism
is developed in which proved statements can be transferred between HOL4 and
ACL2. Our work is in many ways simpler, e.g. Milawa’s S-expressions do not
contain complex rationals, characters or strings, which clutter proofs. On the other
hand, we pushed our modeling and proofs further: we proved the soundness of
Milawa’s inference rules and its implementation.

Our work concerns the verification of an idealized ACL2-like theorem prover.
Many other types of proof tools have been verified. As a few examples, McCune
and Shumsky [51] proved the soundness of Ivy, a first-order logic proof checker
that checks proofs from the external, high-performance provers Otter and MACE.
Ridge and Margetson proved soundness and completeness of a simple first-order
tableau prover [52] that can be executed in Isabelle/HOL by rewriting. Marić
verified a SAT solver [53] with many modern optimizations. Marić suggests that
his SAT solver is to be used as an automatically Isabelle/HOL-code-generated
implementation. The current Isabelle/HOL code generator [54] is an easy route to
reasonably fast implementations, but it fails to carry over the verification proof to
the implementation, i.e. there is no Isabelle/HOL theorem by which Marić could
connect the implementation to the properties he proved of his SAT solver. Marić
could potentially have carried over the verification result using the code synthesis
techniques that we have developed [44,41].

15 Conclusions

This paper has presented the Milawa theorem prover and proofs that establish
its soundness down to the concrete x86 machine code that runs it. We have used
HOL4 to formally specify the Milawa logic, to prove this logic is sound, to prove
that Milawa’s kernel is faithful to the Milawa logic, and to prove that our Lisp
implementation, Jitawa, correctly executes Milawa’s kernel. We have connected
these results in a top-level HOL4 theorem which, we believe, constitutes the most
comprehensive evidence of a theorem prover’s soundness to date.

The reflective Milawa theorem prover is sound 67

As a consequence of this result, we can trust the Milawa theorem prover even
though it directly uses high-level proof automation without generating de Bruijn-
style evidence. But how far can we trust it? Could there still be bugs? We must
admit that a thoroughgoing skeptic still has several avenues of attack:

1. We trust our top-level theorem because it has been mechanically checked by
HOL4. HOL4 is an LCF-style prover that implements a well-known logic, fea-
tures a small kernel, and is generally regarded as a trustworthy system. How-
ever, it is possible that there could be bugs in HOL4, or, more likely, in its ML
runtime or in supporting software, e.g., the C compiler that built the runtime
or the operating system, or with the hardware we used. Perhaps we exploited
such a bug to carry out our verification?

2. Our top-level soundness theorem makes a claim about how our program will
behave when it is executed on a HOL4 model of X86. We wrote this model
carefully and have informally tested it, but we may have made a mistake. For
that matter, real hardware may have bugs: ensuring that a physical computer
properly implements its ISA is an inexact and very difficult problem. Perhaps
a real computer will not execute Milawa as our model assumes?

3. Our program relies on the operating system to protect it from other programs
and to carry out basic I/O operations (Section 7.4). This is a large code base
that almost surely has bugs. Perhaps the OS cannot be trusted, or perhaps our
I/O operations have not been modeled or implemented correctly?

4. Our top-level soundness theorem uses HOL4 definitions to formalize concepts
such as the semantics of the logic. Perhaps there is an error in a definition like
|=π that means our theorem does not say quite what we intend?

However, such a skeptic will also have plentiful objections to, say, a theorem prover
that generates an explicit de Bruijn justification for some “simple” program to
check. After all, any such checking program will at least be based on some under-
standing of the logic, on software stacks including at least an operating system
for basic I/O and protection from other programs, on (in practice) some runtime
system or compiler toolchain, on some belief about how the hardware is supposed
to operate, and on the hardware itself.

Altogether it took around 4 man-years of programming and proof effort to
develop and verify Milawa and Jitawa. Many aspects of Milawa’s design have
helped to make its verification possible. Its untyped, computational logic provides
a very direct connection to Lisp evaluation, allows for a simple reflection principle,
and is weak enough for its soundness to be proven directly in HOL. The simplicity
of its programming language helps to avoid complexity in the Jitawa runtime,
reducing the effort needed for its development and verification. Its kernel is small
and straightforward enough to practically process in HOL4.

Much of this work, especially in the areas of machine-code verification, is likely
to be reusable in future proof efforts. For instance, tools we developed are already
being used in the CakeML [48] project. However, it would likely be considerably
more difficult to carry out a similar verification project for any mainstream theo-
rem prover. For instance, ACL2 exposes a much deeper connection to its Common
Lisp runtime and has a much larger kernel that bears little relation to its logic.
Meanwhile, LCF style systems like HOL4 and HOL Light implement much more
powerful logics and include elaborate ML runtimes. It will be exciting to see if the

68 Jared Davis, Magnus O. Myreen

CakeML project will be able to overcome these challenges to produce a verified
HOL light theorem prover.

For more information on Milawa and Jitawa, e.g. further reading, the actual
proof scripts, or to download and run the verified code, see:

http://www.cs.utexas.edu/~jared/milawa/Web/

http://www.cl.cam.ac.uk/~mom22/jitawa/

Acknowledgements We thank Ruben Gamboa and Gerwin Klein for encouraging us to write
this paper. We thank the anonymous JAR reviewers and Ramana Kumar for their very helpful
feedback on drafts of this paper.

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10) (1969) 576–580

2. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers (June 2000)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
Springer-Verlag (2004)

4. Slind, K., Norrish, M.: A brief overview of HOL4. In Mohamed, O.A., Muñoz, C., Tahar,
S., eds.: TPHOLs. LNCS, Springer (2008)

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. Volume 2283 of LNCS. Springer (2002)

6. Davis, J.C.: A Self-Verifying Theorem Prover. PhD thesis, University of Texas at Austin
(December 2009)

7. Boyer, R.S., Kaufmann, M., Moore, J.S.: The Boyer-Moore theorem prover and its inter-
active enhancement. Computers and Mathematics with Applications 29(2) (1995) 27–62

8. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of
Computation. LNCS. Springer-Verlag (1979)

9. Harrison, J.: HOL Light: An overview. In Berghofer, S., Nipkow, T., Urban, C., Wenzel,
M., eds.: TPHOLs. LNCS, Springer (2009)

10. Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In: Interactive
Theorem Proving (ITP). LNCS, Springer (2011)

11. Harrison, J.: Towards self-verification of HOL Light. In Furbach, U., Shankar, N., eds.:
IJCAR. LNAI, Springer (2006)

12. Griffioen, D., Huisman, M.: A comparison of PVS and Isabelle/HOL. In Gundy, J., Newey,
M., eds.: Theorem Proving in Higher Order Logics (TPHOLS ’98). Volume 1479 of LNCS.,
Springer-Verlag (September 1998) 123–142

13. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: SMT ’09, ACM
(2009) 1–5

14. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF
solvers. In: Proceedings of the 13th International Conference on Theory and Applications
of Satisfiability Testing. SAT ’10, Springer (2010) 44–57

15. Järvisalo, M., Heule, M.J., Biere, A.: Inprocessing rules. In Gramlich, B., Miller, D.,
Sattler, U., eds.: Automated Reasoning. Volume 7364 of LNCS. Springer (2012) 355–370

16. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Philosophical
Transactions of the Royal Society A 363(1835) (October 2005) 2351–2375

17. Wetzler, N., Heule, M., Hunt, Jr., W.A.: DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In: SAT ’14. Volume 8561 of LNCS., Springer 422–429

18. Balabanov, V., Jiang, J.R.: Unified qbf certification and its applications. Formal Methods
in System Design 41(1) (2012) 45–65

19. Böhme, S., Fox, A., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector proofs in
HOL4 and Isabelle/HOL. In: CPP ’11. Volume 7086 of LNCS., Springer (December 2011)
183–198

20. McCune, W., Shumsky, O.: Ivy: A preprocessor and proof checker for first-order logic. In:
Computer-Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers (2000)

http://www.cs.utexas.edu/~jared/milawa/Web/
http://www.cl.cam.ac.uk/~mom22/jitawa/

The reflective Milawa theorem prover is sound 69

21. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solving
through verified SAT proof checking. In: ICTAC ’10. Volume 6255 of LNCS., Springer
(2010) 260–274

22. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL theorem
provers. Journal of Applied Logic 7(1) (March 2009) 26–40

23. Marić, F.: Formalization and implementation of modern SAT solvers. Journal of Auto-
mated Reasoning 43(1) (June 2009) 81–119

24. Hurd, J.: The OpenTheory standard theory library. In Bobaru, M., Havelund, K., Holz-
mann, G.J., Joshi, R., eds.: NASA Formal Methods. LNCS, Springer (2011)

25. Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic. Jour-
nal of Automated Reasoning 26(2) (2001) 161–203

26. Davis, J.: Reasoning about file input in ACL2. In Manolios, P., Wilding, M., eds.: ACL2
’06. (August 2006)

27. Kaufmann, M., Moore, J.: Design goals of ACL2. Technical Report 101, Computational
Logic, Inc. (1994)

28. Rager, D.L., Hunt, Jr., W.A.: Implementing a parallelism library for a functional subset
of LISP. In: International Lisp Conference (ILC). (March 2009) 18–30

29. Boyer, R.S., Hunt, Jr., W.A.: Function memoization and unique object representation for
ACL2 functions. In: ACL2 ’06, ACM (2006)

30. Hunt, Jr., W.A., Krug, R.B., Moore, J.: Linear and nonlinear arithmetic in ACL2. In Geist,
D., ed.: Correct Hardware Design and Verification Methods (CHARME ’03). Volume 2860
of LNCS., Springer-Verlag (2003) 319–333

31. Hunt, Jr., W.A., Kaufmann, M., Krug, R.B., Moore, J., Smith, E.W.: Meta reasoning in
ACL2. In Hurd, J., Melham, T., eds.: Theorem Proving in Higher Order Logics (TPHOLS
’05). Volume 3603 of LNCS., Springer Berlin (2005) 163–178

32. Brock, B., Kaufmann, M., Moore, J.S.: Rewriting with equivalence relations in ACL2.
Journal of Automated Reasoning 40(4) (May 2008) 293–306

33. Kaufmann, M., Moore, J.S., Ray, S., Reeber, E.: Integrating external deduction tools with
acl2. Journal of Applied Logic 7(1) (March 2009) 3–25

34. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Tech-
nical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995)

35. McCarthy, J.: Recursive functions of symbolic expressions and their computation by
machine, part 1. Communications of the ACM 3(4) (April 1960) 184–195

36. Shoenfield, J.R.: Mathematical Logic. The Association for Symbolic Logic (1967)
37. Shankar, N.: Metamathematics, Machines, and Gödel’s Proof. Cambridge University Press

(1994)
38. Boyer, R.S., Moore, J.S.: A Computational Logic Handbook. second edn. Academic Press

(1997)
39. Myreen, M.O., Gordon, M.J.C.: Verified LISP implementations on ARM, x86 and Pow-

erPC. In Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., eds.: TPHOLs. LNCS, Springer
(2009)

40. Kaufmann, M., Slind, K.: Proof pearl: Wellfounded induction on the ordinals up to ε 0.
In Schneider, K., Brandt, J., eds.: Theorem Proving in Higher Order Logics (TPHOLs).
LNCS, Springer (2007) 294–301

41. Myreen, M.O.: Functional programs: conversions between deep and shallow embeddings.
In: Interactive Theorem Proving (ITP). LNCS, Springer (2012)

42. Myreen, M.O.: Verified just-in-time compiler on x86. In Hermenegildo, M.V., Palsberg,
J., eds.: Principles of Programming Languages (POPL), ACM (2010)

43. Myreen, M.O.: Formal verification of machine-code programs. PhD thesis, University of
Cambridge (2009)

44. Myreen, M.O., Slind, K., Gordon, M.J.: Extensible proof-producing compilation. In
de Moor, O., Schwartzbach, M.I., eds.: Compiler Construction (CC). LNCS, Springer
(2009)

45. Manolios, P., Moore, J.S.: Partial functions in ACL2. J. Autom. Reasoning 31(2) (2003)
107–127

46. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: HOL with definitions: Semantics,
soundness, and a verified implementation. In Klein, G., Gamboa, R., eds.: Interactive
Theorem Proving (ITP). LNCS, Springer (2014)

47. Myreen, M.O., Owens, S., Kumar, R.: Steps towards verified implementations of HOL
light. In Blazy, S., Paulin-Mohring, C., Pichardie, D., eds.: Interactive Theorem Proving
(ITP). LNCS, Springer (2013)

70 Jared Davis, Magnus O. Myreen

48. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of
ML. In Jagannathan, S., Sewell, P., eds.: Principles of Programming Languages (POPL),
ACM (2014)

49. Gordon, M.J.C., Hunt, Jr., W.A., Kaufmann, M., Reynolds, J.: An embedding of the
ACL2 logic in HOL. In: International Workshop on the ACL2 Theorem Prover and its
Applications (ACL2), ACM (2006) 40–46

50. Gordon, M.J.C., Reynolds, J., Hunt, Jr., W.A., Kaufmann, M.: An integration of HOL
and ACL2. In: Formal Methods in Computer-Aided Design (FMCAD), IEEE Computer
Society (2006) 153–160

51. McCune, W., Shumsky, O.: System description: Ivy. In: Automated Deduction (CADE).
LNCS, Springer (2000) 401–405

52. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover for
first order logic. In Hurd, J., Melham, T.F., eds.: TPHOLs. LNCS, Springer (2005)

53. Marić, F.: Formal verification of a modern SAT solver by shallow embedding into Is-
abelle/HOL. Theor. Comput. Sci. 411(50) (2010) 4333–4356

54. Haftmann, F., Bulwahn, L.: Code generation from Isabelle/HOL theories Isabelle2011-1
Documentation, http://isabelle.in.tum.de.

http://isabelle.in.tum.de

	Introduction
	Current Approaches to Developing Trustworthy Provers
	Our Approach — The Milawa Stack
	The User Interface
	The Kernel
	The Bootstrapping Process
	The Runtime
	The Logic the Kernel Implements
	Specification of the Runtime
	Proving Faithfulness to the Logic
	The Bottom Layer: the x86 Model
	Constructing and Verifying the Runtime
	Top-Level Soundness Theorem
	Discussion of Related Work
	Conclusions

