
Reasoning about ACL2 File Input

Jared Davis
Department of Computer Sciences
The University of Texas at Austin

jared@cs.utexas.edu

ABSTRACT
We introduce the logical story behind file input in ACL2 and
discuss the types of theorems that can be proven about file-
reading operations. We develop a low level library for rea-
soning about the primitive input routines. We then develop
a representation for Unicode text, and implement efficient
functions to translate our representation to and from the
UTF-8 encoding scheme. We introduce an efficient function
to read UTF-8-encoded files, and prove that when files are
well formed, the function produces valid Unicode text which
corresponds to the contents of the file.

We find exhaustive testing to be a useful technique for prov-
ing many theorems in this work. We show how ACL2 can
be directed to prove a theorem by exhaustive testing.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—correctness proofs, formal methods; D.2.1 [Software
Engineering]: Requirements/Specifications

General Terms
Verification, Performance

Keywords
ACL2, file input, exhaustive testing, Unicode, UTF-8

1. INTRODUCTION
We thought it might be interesting to develop some “typical”
software with ACL2. While the lack of networking, thread-
ing, and graphics is limiting, ACL2 does include functions
to read from files and we could perhaps write some console
based programs such as lexers, parsers, compilers, and other
utilities. Afterwards, we might be able to use the theorem
prover to gain confidence in these programs.

What can we say about a file-reading program? It would be
nice to somehow show the basic input routines return exactly
the contents of a file as they occur on the disk, but such
a correspondence is beyond our scope: we cannot reason
about the physical apparatus used to read from some storage
device, nor can we reason about the system code responsible
for controlling this apparatus. In this paper, we will assume
these operations are implemented correctly.

What, then, do we mean when we speak of reasoning about
input routines? To describe the file input operations, ACL2

presents us with a logical story — a fiction whereby we can
“see” the contents of files on the disk before they are read.
Using this fiction, we can reason about functions which per-
form file input.

We begin by explaining this story (Section 2), and describ-
ing a library of basic theorems about the primitive input
routines (Section 3). These theorems are particularly mun-
dane, e.g., reading a byte yields some natural number less
than 256, reading a byte from an open channel leaves the
channel open, etc., and form the basis for our remaining
work.

We then develop a representation for Unicode text, and
write a function for reading Unicode text from UTF-8 en-
coded files (Section 4). We prove a number of well-formed-
ness properties, inspired by the Unicode standard. Ulti-
mately, we prove reading a valid UTF-8 encoded file produces
Unicode text corresponding to the contents of the file.

During the development of these theorems, we will often
find exhaustive testing to be a useful proof method. We can
apply exhaustive testing to any problems which can be re-
duced, in a straightforward way, to checking a finite number
of cases. This finite number might be large: in one proof we
test 232 cases. The basic idea is to write an efficient testing
function which we prove will test every case, then instruct
the prover to run this function and observe that it finds no
problems.

We have gone to some lengths to make these functions ef-
ficient, and we discuss these optimizations and give some
rudimentary performance results (Section 5). We conclude
with some remarks about writing extended file operations
and using the Unicode library (Section 6).

2. THE STORY OF FILE INPUT
Like any other program, ACL2 must interact with the op-
erating system in order to read the contents of a file. This
interaction is not visible to the ACL2 user, whom instead
sees a fiction of how file input occurs in the ACL2 logic.

At the core of this fiction is state, ACL2’s logical represen-
tation of its host system. Logically speaking, a valid state is
an ACL2 object which is recognized by the function state-

p, which returns true only on certain fifteen-tuples which
satisfy a litany of requirements. Essentially, state objects
are “records” implemented using position-based lists [1].



The ACL2 state includes a representation of the file system.
In this paper, we are only concerned with the acts of opening
files, reading data from open files, and closing files, so only
three of state’s fields are relevant: file-clock, readable-files,
and open-input-channels.

File-clock. The state’s file-clock is an integer which is in-
cremented every time a file is opened or closed, and every
time that certain other tasks (e.g., system calls) are per-
formed. This allows us to capture the idea that the state of
the file system may change over the course of our program’s
execution, e.g., our program could create, change, or delete
a file.

Readable-files. The state’s readable-files field is an asso-
ciation list where:

• The keys are triples of the form (string type time),
where string is a file name, time is an integer, and type
is one of the three file types: :character, :byte, or
:object, and

• The value associated with each key is a list of data.
This list represents the contents which would eventu-
ally be read from the file by our program if we were to
open this file at the specified point in time.

This table allows us to capture the relevant state of the
file system at any given point in our program’s execution.
That is, this table putatively contains everything that we
could ever read from the file system during our program’s
execution. Of course, we can never access the contents of
this table from within an ACL2 program, because it does
not “really exist”.

Notice that since the contents each file are represented as a
list of elements, we are able to assume that all files are of
a finite size! So-called “files” which are actually sockets or
devices like /dev/random are not accurately modeled by this
story, and should not be opened.

Open-input-channels. The state’s open-input-channels
field is another association list, where:

• The keys are symbols in the ACL2-INPUT-CHANNEL pack-
age, and

• The values are of the form ((:header type file-name

open-time) . elements), where file-name is a string,
open-time is an integer, type is one of :character,
:byte, or :object and elements is a list of elements of
the appropriate type.

This table allows us to represent the remaining contents
which have not yet been read from each open file. Again,
we cannot look at this table at run-time, because it is never
actually constructed. We can now appreciate how the basic
file operations are understood in the logic:

• open-input-channel takes three inputs: a file name to
open, the “type” of reading to use, (i.e., :character,
:byte, or :object), and the state. It looks up this file
in the readable-files table to ensure that it is openable
at the current file-clock’s time, and if so creates an

entry in the open-input-channels table for the file and
its contents (which are copied from the readable-files
table). Finally, it increments the file-clock.

• read-byte$ takes as input a channel to read from and
the state. It searches for the channel’s entry in the
open-input-channels table, and if found, modifies the
entry by removing the first element, which is returned
to the caller. The other reading operations are similar.

• close-input-channel takes two inputs: a channel to
close and the state. It removes the channel’s entry
from the open-input-channels table and increments the
file-clock.

Keep in mind that this logical story is a fiction which never
really exists, and is only interesting from the perspective
of theorem proving. Under the hood, reading from files is
implemented through system calls as in any other program-
ming language.

3. A BASIC FILE INPUT LIBRARY
ACL2 allows files to be opened in one of three modes, :char-
acter, :byte, or :object, which allow us to read an ASCII
character, a byte, or a Lisp object from the file at a time.
Since our Unicode files are not Lisp or ASCII data, we will
largely ignore :object and :character modes, and instead
focus only on :byte input.

Unfortunately, ACL2 comes with little support for reasoning
about file input operations “out of the box.” Starting with
the logical definitions of the file operations, we can work our
way through proving the mundane but useful theorems we
would expect. We bundle these theorems into a low-level
input library.

The function (open-input-channel filename type state)

returns (mv channel state). We prove:

• Whenever filename is a string, type is one of the valid
input modes, and the input state is valid, then output
state is also valid, and

• If the output channel is non-nil — i.e., if no error has
occurred — then channel is an open input channel of
the appropriate type in the output state.

The function (read-byte$ channel state) returns as out-
put (mv byte state). We prove:

• Whenever channel is an open input channel of the ap-
propriate type in a valid input state, then the output
state is also valid, and

• Furthermore, if the output elem is non-nil — i.e., if we
have not encountered EOF — then elem is a character
or an integer in the range [0, 255], as appropriate.

• Finally, if the output elem is nil, then the results of
subsequent reads are also nil.

Finally, (close-input-channel channel state) simply re-
turns state. We prove:



• Whenever the input state is valid and channel is an
open input channel of any of the valid types, then the
output state is also valid.

All of the above will almost certainly be needed for the guard
verification of any ACL2 program using these functions. The
proofs are completely uninteresting, and are mainly details
about state and its components.

Another important fact is that reading a file makes progress,
i.e., the number of bytes left to read decreases each time we
read a byte. Unfortunately, the file’s contents are buried
deep inside the state’s open-input-channels table. To ad-
dress this, we add a new function, (file-measure channel

state), which retrieves the length of the file’s remaining
contents. This allows us to prove the appropriate theorems,
e.g., reading a byte or character always decreases this mea-
sure, unless we are at the end of the file.

3.1 Extended Input Routines
Given our guard verification theorems and the ability to ar-
gue that read-byte$ decreases the file-measure of a chan-
nel, we can write a function, (read-file-bytes filename

state), which opens a file for input, reads its entire contents
into a list of bytes, and closes the file after it is done.

Read-file-bytes is perhaps the simplest way to read a file.
We use MBE to provide a tail-recursive executable counter-
part for efficiency and to avoid stack size limitations, but of
course we are still limited to reading files which can fit into
memory as a list of bytes. The function is also used as our
notion of a file’s contents during theorem proving.

We provide additional routines to read from a file in units
larger than a byte. In particular, the following functions
can accommodate various signedness and byte orders for 1,
2, and 4 byte units. Each have been optimized somewhat
via MBE to use fixnum arithmetic, for efficiency.

Function Bytes Result Range Byte Order
read-byte$ 1 [0, 28 − 1] N/A
read-8s 1 [−27, 27 − 1] N/A
read-16ube 2 [0, 216 − 1] Big Endian
read-16ule 2 [0, 216 − 1] Little Endian
read-16sbe 2 [−215, 215 − 1] Big Endian
read-16sle 2 [−215, 215 − 1] Little Endian
read-32ube 4 [0, 232 − 1] Big Endian
read-32ule 4 [0, 232 − 1] Little Endian
read-32sbe 4 [−231, 231 − 1] Big Endian
read-32sle 4 [−231, 231 − 1] Little Endian

We prove the obvious properties about these functions, e.g.,
they leave their input channel open and return an integer
in the appropriate range on success. We also provide “block
reading” operations based on each of the above functions,
e.g., read-16ube-n will read up to n unsigned 16-bit quan-
tities from the file using big-endian byte order. These sorts
of functions are easy to write, and can be easily chained
together.

4. UNICODE REPRESENTATION

Unicode [2] is a popular method for representing text. Where
ASCII uses only the natural numbers 0 ≤ n ≤ 127 as charac-
ters, Unicode uses two much larger ranges, 0 ≤ n ≤ #xD7FF

and #xE000 ≤ n ≤ #x10FFFF, allowing every human lan-
guage to be simultaneously represented.

Each of these numbers is called a Unicode scalar value, and
we write a simple predicate, uchar?, to recognize them.
Note that Unicode scalar values are sometimes also called
Unicode codepoints.1 We also provide some additional func-
tions:

• (ustring? x) recognizes lists of uchar? objects, and
is our representation for Unicode text. The Unicode
standard would call such lists Unicode 32-bit Strings
(§3.9-D29d).

• (ustring x) creates the corresponding Unicode string
from any regular ACL2 stringp object. For exam-
ple, (ustring "Apples") produces the list (65 112

112 108 101 115).

• (ascii x) creates a stringp based on a Unicode string.
Note that there are many characters in Unicode which
do not exist in ASCII, so this function is not per-
fect and will insert ? characters when the Unicode
string uses non-representable characters. For example,
(ascii ’(1000 65 112 112 108 101 115 1000)) will
produce "?Apples?".

There are seven different Unicode encoding schemes (§3.9-
D39) which can be used for storing Unicode data in files
and for sending Unicode data across networks. Of these,
UTF-8 is perhaps the most popular. This is a variable width
encoding scheme where each Unicode scalar value is laid out
across one to four bytes.

Unicode is a superset of ASCII. In UTF-8 every ASCII char-
acter is represented as a single byte, so that every ASCII file
is by definition a UTF-8 encoded file. This provides back-
wards compatibility with existing text documents and good
compression for English text.

Other characters are encoded by splitting their bits across a
sequence of bytes as governed by Tables 3-5 and 3-6 of the
Unicode standard (See figures 1 and 2, below). We provide
functions (utf8-table35-ok? cp x) and (utf8-table36-

ok? cp x) which return true only if the codepoint cp and
byte sequence x match with some row in these tables.

4.1 Encoding to UTF-8
Using Table 3-5 as a basis, we write (uchar=>utf8 x), which
can be used to convert from uchar? objects into UTF-8
byte sequences. One of the basic properties we would like
to demonstrate about this function is that given any valid
uchar? as input, the resulting byte sequence is acceptable
under Tables 3-5 and 3-6. More specifically, we would like
to prove:

1The codepoints are a superset of the scalar values, which
additionally include the numbers #xD800 ≤ n ≤ #xDFFF,
which are not valid scalar values. (§3.4-D4b, §3.9-D28)



Figure 1: Table 3-5: UTF-8 Bit Distribution (§3.9, D36)

Scalar Value 1st Byte 2nd Byte 3rd Byte 4th Byte
00000000 0xxxxxxx 0xxxxxxx

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Figure 2: Table 3-6: Well Formed UTF-8 Byte Sequences (§3.9, D36)

Code Points 1st Byte 2nd Byte 3rd Byte 4th Byte
0000..007F 00..7F

0080..07FF C2..DF 80..BF

0800..0FFF E0 A0..BF 80..BF

1000..CFFF E1..EC 80..BF 80..BF

D000..D7FF ED 80..9F 80..BF

E000..FFFF EE..EF 80..BF 80..BF

10000..3FFFF F0 90..BF 80..BF 80..BF

40000..FFFFF F1..F3 80..BF 80..BF 80..BF

100000..10FFFF F4 80..8F 80..BF 80..BF

(implies (uchar? x)

(and (utf8-table35-ok? x (uchar=>utf8 x))

(utf8-table36-ok? x (uchar=>utf8 x))))

How can we prove this? The functions utf8-table35-ok?

and utf8-table36-ok? are non-recursive, but involve a
number of seemingly arbitrary cases. Furthermore, the func-
tion uchar=>utf8 involves low level bit-manipulation oper-
ations such as ash and logior which are not particularly
easy to reason about.

Halfhearted attempts to simply unleash arithmetic books
such as arithmetic-3 and ihs were unsuccessful, and led
to many failed subgoals which appeared to be nontrivial
arithmetic problems. Perhaps, with a more genuine effort,
we could develop an arithmetic library which could handle
this problem for us, but we have found a more convenient
solution which we will use throughout this paper.

4.2 Proofs by Exhaustive Testing.
We know that all of the valid uchar? objects naturals in
[0, #x10FFFF], so why not just exhaustively test each of these
numbers? It is quite easy to write a function to do this, e.g.,

(defun test-uchar=>utf8 (i)

(and (implies

(uchar? i)

(and (utf8-table36-ok? i (uchar=>utf8 i))

(utf8-table35-ok? i (uchar=>utf8 i))))

(or (zp i)

(test-uchar=>utf8 (1- i)))))

We can convince ourselves that the goal theorem is true
by running our test function on any input which covers all
uchar? objects, e.g., #x10FFFF, and observing that t is re-
turned. A similar argument can be used to convince ACL2
that our goal theorem is true.

We first prove the following lemma by induction, which
shows that if the testing function succeeds on input i, then
all naturals j ≤ i satisfy the desired property. Impor-
tantly, this proof does not need to use the definitions of
uchar=>utf8, utf8-table35-ok?, and utf8-table36-ok?.

(defthmd lemma

(implies

(and (test-uchar=>utf8 i)

(natp i)

(natp j)

(<= j i)

(uchar? j))

(and (utf8-table35-ok? j (uchar=>utf8 j))

(utf8-table36-ok? j (uchar=>utf8 j)))))

Now, our goal theorem is submitted with the following hint:

(defthm goal

(implies

(uchar? x)

(and (utf8-table35-ok? x (uchar=>utf8 x))

(utf8-table36-ok? x (uchar=>utf8 x))))

:hints(("Goal" :use (:instance lemma

(i #x10FFFF)

(j x)))))

ACL2’s proof proceeds as follows. First, the goal is aug-
mented as indicated by the :use hint, producing the new
goal:

(implies

(implies

(and (test-uchar=>utf8 1114111)

(natp 1114111)

(natp x)



(<= x 1114111)

(uchar? x))

(and (utf8-table35-ok? x (uchar=>utf8 x))

(utf8-table36-ok? x (uchar=>utf8 x))))

(implies (uchar? x)

(and (utf8-table35-ok? x (uchar=>utf8 x))

(utf8-table36-ok? x (uchar=>utf8 x)))))

Since (test-uchar=>utf8 1114111) is a ground term, ACL2
evaluates it to t by running our testing function. Evalua-
tion can similarly simplify (natp 1114111) to t. Further-
more, since we have (uchar? x), ACL2 is able to relieve
(uchar? x), (natp x) and (<= x 1114111), leaving a triv-
ial tautology. Altogether, the proof takes about 2 seconds,
most of which is spent running the testing function.

This proof method is convenient in that it allows us to bar-
barically force our way through a proof, skipping the time
and energy which would have been needed to develop good
arithmetic rules for these bit operations. Another feature:
if our property is violated, we can easily augment our test-
ing function to print the counterexamples which cause the
failure.

4.3 Decoding from UTF-8.
Now that we can convert any uchar? into a UTF-8 byte
sequence, we will consider the reverse problem. That is,
suppose that x is the UTF-8 encoded byte sequence for some
Unicode scalar value, and our goal is to recover the value
which maps to x.

If we know the length of x, we can easily recover the scalar
value associated with it by using the bit manipulation sug-
gested by Table 3-5. We begin by writing functions to per-
form these combinations. For example, (utf8-combine2 x1

x2) produces the Unicode scalar value associated with the
two-byte sequence (x1 x2). Similarly, (utf8-combine3 x1

x2 x3) handles the three-byte case, and (utf8-combine4 x1

x2 x3 x4) handles the four-byte case. (We do not bother
with a function for the one-byte case, since the transforma-
tion is just the identity.) For each of these functions, we
also produce a guard function, e.g., utf8-combine2-guard,
which checks to ensure that the byte sequence is valid ac-
cording to Tables 3-5 and 3-6.

We use exhaustive testing to prove that when each guard
is met, the combined value matches its input under each
table, and that utf8=>uchar applied to the result will pro-
duce the original input list. In the four-byte case of these
proofs, the exhaustive tester must consider 232 possibilities.
After fixnum optimizations are added to our combination
functions, slightly over 3 minutes of run time are needed to
finish this proof on a 2.8 GHz Pentium 4. We are probably
near the upper limit of feasibility for this proof method.

We can now create a function to decodes a single UTF-
8 character by first examining the length of the character’s
byte sequence, and then calling the appropriate combination
function:

(defund utf8-char=>uchar (x)

(declare (xargs

:guard (and (unsigned-byte-listp 8 x)

(<= 1 (len x))

(<= (len x) 4))))

(and (mbt (true-listp x))

(case (len x)

(1 (if (utf8-table35-byte-1/1? (first x))

(first x)

nil))

(2 (let ((x1 (first x))

(x2 (second x)))

(if (utf8-combine2-guard x1 x2)

(utf8-combine2 x1 x2)

nil)))

(3 (let ((x1 (first x))

(x2 (second x))

(x3 (third x)))

(if (utf8-combine3-guard x1 x2 x3)

(utf8-combine3 x1 x2 x3)

nil)))

(4 (let ((x1 (first x))

(x2 (second x))

(x3 (third x))

(x4 (fourth x)))

(if (utf8-combine4-guard x1 x2 x3 x4)

(utf8-combine4 x1 x2 x3 x4)

nil)))

(otherwise nil))))

We use exhaustive testing to prove that this function is the
inverse of uchar=>utf8 for all valid uchar?s. Furthermore,
using the theorems proven about our combining functions,
we can conclude that whenever utf8-char=>uchar returns
a non-nil value, the result is a uchar? and satisfies Tables
3-5 and 3-6. Finally, we show that uchar=>utf8 is also the
inverse of utf8=>uchar for all acceptable inputs.

4.4 Decoding Byte Sequences.
Since we can encode an arbitrary uchar? into UTF-8, it is
easy to encode any ustring? by successively encoding each
character and appending the results. But decoding UTF-
8 strings is not so easy: our character decoding operation,
utf8-char=>uchar, works by first considering the length of
the UTF-8 character’s byte sequence, but this is not known
if we wish to process a string of bytes which, as in files, are
laid out one after the next with no structure to tell us where
characters begin and end.

We say that a UTF-8 character is a list of one to four bytes
which can be successfully converted into a Unicode scalar
value. In code:

(defun utf8-char? (x)

(and (unsigned-byte-listp 8 x)

(<= 1 (len x))

(<= (len x) 4)

(utf8-char=>uchar x)))

Furthermore, we say that a UTF-8 string is a list of such
UTF-8 characters. It is easy to decode a UTF-8 string by
successively applying our character decoding function. Fi-
nally, we say a list of bytes is valid UTF-8 data if it can be
partitioned into a UTF-8 string.



The partitionings of x are those lists which can be flattened
into x by appending their members. For example, we con-
sider ((a b) (c d e) (f) () (g h)) to be a partitioning
of x = (a b c d e f g h). We can describe partitionings
as lists of lengths, e.g., the partitioning above can be de-
scribed as (2 3 1 0 2).

An examination of the 1st Byte column in Table 3-5 reveals
that any byte matches at most one of these bit patterns.
Hence, if our goal is to partition a list of bytes, x, into a
UTF-8 string, we can use the first byte of x to determine
how large the first partition will need to be. Based on this
observation, we introduce the (utf8-partition x), which
returns (mv successp sizes), where successp indicates if
x contains valid UTF-8 data, and sizes is a list of lengths
which will partition x into a UTF-8 string. We prove:

• Soundness. If utf8-partition is successful, the list
of sizes returned will partition x into a valid UTF-8
string.

• Completeness. If any partitioning of x would result in a
valid UTF-8 string, then utf8-partition is successful.

• Uniqueness. If any partitioning of x would result in
a valid UTF-8 string, then utf8-partition returns
exactly that partitioning.

Given this partitioning algorithm, we can now (inefficiently)
convert a raw list of UTF-8 bytes into Unicode by first parti-
tioning it, then applying our UTF-8 string conversion func-
tion. We call this function utf8=>ustring, and we can prove
that it and ustring=>utf8 are inverses.

We finally provide a much more efficient algorithm for de-
coding a list of bytes without first partitioning it and so
forth. We make this function tail recursive, optimize it to
make use of fixnums, and use MBE so that utf8=>ustring

uses this efficient function for its execution. We will not
show the body of this function, because it is long and quite
similar to the function discussed in the next section.

4.5 An Efficient UTF-8 Reader
We can now read and decode a UTF-8 files by first run-
ning read-file-bytes to read the file into a list of bytes,
then using utf8=>ustring to efficiently decode this list into
Unicode. However, this is somewhat inefficient, because we
must cons together this intermediate list of bytes. It would
be more efficient to decode the file as we read it.

Towards this end, we write a new function that decodes the
file as it is read. The core of this routine is heavily optimized
and tail recursive, and is presented in Figure 3, which makes
up the last 3 pages of this paper. Care must be taken to
ensure that both the same data and stream are returned by
the :logic and :exec portions of the MBE, i.e., we must be
careful to ensure that both read exactly the same number
of bytes.

5. PERFORMANCE
The test system we used is a 2.8 GHz Pentium 4, running
Ubuntu Linux 2.6.13.2. We built our books using ACL2
2.9.4 on GCL 2.6.7 configured with 219 maxpages. The

hard disk information reported by dmesg is: WDC WD400-
BB-75JHC0, ATA DISK drive, max request size: 128KiB,
78125000 sectors (40000 MB) w/2048KiB Cache, CHS=-
65535/16/63, UDMA(100), cache flushes supported.

5.1 Basic File Operations
To get a baseline reading on the system’s performance, we
wrote programs in C and C++ which repeatedly read a char-
acter from the file and discard it, using the following loops,
respectively:

for(i = 0;i < size;++i) // int i, size

c = fgetc(in); // char c, FILE* in

for(i = 0;i < size;++i) // int i, size

c = in.get(); // char c, ifstream in

We then wrote Lisp equivalents of these programs, according
to the following template:

(defun ,test (n channel state)

(declare (xargs :guard (and (natp n) ...)))

(if (mbe :logic (zp n)

:exec (= (the-fixnum n) 0))

state

(mv-let (data state)

(,function channel state)

(declare (ignore data))

(,test (the-fixnum (1- (the-fixnum n)))

channel state)))))

We instructed each program to read 300 MB from a test
file. We ran each test four times, then threw out the worst
time and averaged the remaining results in order to minimize
noise from caching or other processes. We summarize our
performance results below:

Test Average Time Throughput
C fgetc 5.73s 52.37 MB/s
C++ ifstream 10.78 27.83
read-byte 9.46 31.71
read-8s 11.95 25.10
read-16ube 14.89 20.15
read-16ule 14.84 20.21
read-16sbe 16.00 18.75
read-16sle 14.90 20.13
read-32ube 50.52 5.94
read-32ule 50.93 5.89
read-32sbe 15.74 19.06
read-32sle 15.99 18.76

The abysmal performance of read-32ube and read-32ule

is due to our inability to fully fixnum-optimize these op-
erations. That is, the longs which GCL uses to repre-
sent fixnums are signed 32-bit numbers on our test ma-
chine, and cannot represent the whole range of values which
read-32ube and read-32ule might return.

5.2 UTF-8 Performance
The performance of our UTF-8 reading function is based in
part upon the data it is given, so we ran it against both the



concatenated text of our Library’s source code (written in
English) and against a history book (written in Chinese).

English Text. Our test file is about 19.7 million characters
long. Starting from a fresh ACL2 session, the test system
reads and decodes the file in 5.19 seconds, for a throughput
of 3.81 million characters per second, i.e., about 3.8 MB/sec.

Chinese Text. Our test file is the same size in MB, but is
only about 7.2 million characters long, since Chinese char-
acters can take multiple bytes. Starting from a fresh ACL2
session, the test system reads and decodes the file in 2.02
seconds, for a throughput of about 3.6 million characters per
second, or about 9.8 MB/sec.

Note that, in these tests, we are not simply throwing data
away as we read it, but instead we are constructing a ustring?

corresponding to the contents of the file. As a result, it is
harder to get reliable timings due to allocation and garbage
collection time.

6. CONCLUSIONS
Normally, ACL2 is used to reason about models of other
systems, and not to write console programs. But ACL2 pro-
grams can have pretty good performance, and if we write
these programs in ACL2 itself then we can directly reason
about their behavior with the integrated theorem prover.
This development model might be more straightforward than
developing a model of some other programming system and
reasoning about a deeply embedded interpreter.

Of course, this approach is far from perfect. The theorem
prover does not consider some aspects of an ACL2 function’s
execution, for example stack overflow and memory usage.
Also, the story of file input may not perfectly match the
semantics of a Unix system with other running programs,
e.g., being able to claim that every file is finite.

In any event, this library should be a useful building block
for anyone wishing to write such a utility and reason about
file operations. In total, the library runs slightly over 9,000
lines of ACL2 (including about 1,200 lines of whitespace
and 1,200 lines of comments) with about 140 defuns and
550 defthms. It is freely available under the terms of the
GNU General Public License, and is distributed with ACL2
3.0.

7. REFERENCES
[1] Matt Kaufmann and Rob Sumners. Efficient rewriting

of operations on finite structures in ACL2. In Third
International Workshop on the ACL2 Theorem Prover
and its Applications (ACL2-2002), April 2002.

[2] The Unicode Consortium. The Unicode Standard,
Version 4.0. Addison-Wesley, 2003.



Figure 3: Main UTF-8 Reading Routine

(defund read-utf8-fast (channel state acc)

(declare (xargs :guard (and (state-p state)

(symbolp channel)

(open-input-channel-p channel :byte state)

(ustring? acc))

:measure (file-measure channel state)))

(mbe

:logic

(if (and (state-p state)

(symbolp channel)

(open-input-channel-p channel :byte state))

(mv-let (x1 state)

(read-byte$ channel state)

(if (not x1)

(mv (reverse acc) state)

(let ((len1 (utf8-table35-expected-length x1)))

(if (not len1)

(mv ’fail state)

(mv-let (x2-x4 state)

(take-bytes (1- len1) channel state)

(let* ((x1-x4 (cons x1 x2-x4))

(first (utf8-char=>uchar x1-x4)))

(if (not first)

(mv ’fail state)

(read-utf8-fast channel state (cons first acc)))))))))

(mv ’fail state))

:exec

(mv-let

(x1 state)

(read-byte$ channel state)

(if (not x1)

(mv (reverse acc) state)

(cond

((<= (the-fixnum x1) 127)

;; Expected length 1. We don’t need to do any further checking; we can

;; just recur very quickly. Note that this will give us very good

;; performance for English text, where characters are typically only a

;; single byte.

(read-utf8-fast channel state (cons x1 acc)))

((in-range? (the-fixnum x1) 194 223)

;; Expected length 2. (We excluded 192,193 because they are not

;; permitted under Table 3-6.)

(mv-let (x2 state) (read-byte$ channel state)

(if (and x2 (in-range? (the-fixnum x2) 128 191))

;; Manually-inlined utf8-combine2 operation.

(read-utf8-fast

channel state

(cons

(the-fixnum

(logior

(the-fixnum (ash (the-fixnum (logand (the-fixnum x1) 31)) 6))

(the-fixnum (logand (the-fixnum x2) 63))))

acc))

(mv ’fail state))))

((in-range? (the-fixnum x1) 224 239)

;; Expected length 3. (We cover all options here.)

(mv-let (x2 state) (read-byte$ channel state)

(mv-let (x3 state) (read-byte$ channel state)



(if (and x2 x3

(cond ((= (the-fixnum x1) 224)

(in-range? (the-fixnum x2) 160 191))

((= (the-fixnum x1) 237)

(in-range? (the-fixnum x2) 128 159))

(t

(in-range? (the-fixnum x2) 128 191)))

(in-range? (the-fixnum x3) 128 191))

(read-utf8-fast

channel state

(cons

(the-fixnum

(logior

(the-fixnum

(ash (the-fixnum (logand (the-fixnum x1) 15)) 12))

(the-fixnum

(logior

(the-fixnum

(ash (the-fixnum (logand (the-fixnum x2) 63)) 6))

(the-fixnum (logand (the-fixnum x3) 63))))))

acc))

(mv ’fail state)))))

((in-range? (the-fixnum x1) 240 244)

;; Expected length 4. (We only accept 240-244 because of Table 3-6;

;; i.e., we exclude 245, 246, and 247.)

(mv-let (x2 state) (read-byte$ channel state)

(mv-let (x3 state) (read-byte$ channel state)

(mv-let (x4 state) (read-byte$ channel state)

(if (and x2 x3 x4

(cond ((= (the-fixnum x1) 240)

(in-range? (the-fixnum x2) 144 191))

((= (the-fixnum x1) 244)

(in-range? (the-fixnum x2) 128 143))

(t

(in-range? (the-fixnum x2) 128 191)))

(in-range? (the-fixnum x3) 128 191)

(in-range? (the-fixnum x4) 128 191))

(read-utf8-fast

channel state

(cons

(the-fixnum

(logior

(the-fixnum

(ash (the-fixnum (logand (the-fixnum x1) 7)) 18))

(the-fixnum

(logior

(the-fixnum

(ash (the-fixnum (logand (the-fixnum x2) 63)) 12))

(the-fixnum

(logior

(the-fixnum

(ash (the-fixnum (logand (the-fixnum x3) 63)) 6))

(the-fixnum

(logand (the-fixnum x4) 63))))))))

acc))

(mv ’fail state))))))



;; This is a little obscure. As an optimization above, we did not

;; consider cases for first byte = 192, 193, 245, 246, and 247, because

;; these are not allowed under Table 3-6.

;;

;; However, utf8-table35-expected-length predics the lengths of these

;; as 2, 2, 4, 4, and 4, respectively. So, for our MBE equivalence, we

;; need to make sure to advance the stream just like we do in the

;; :logic mode.

((or (= (the-fixnum x1) 192)

(= (the-fixnum x1) 193))

(mv-let (x2 state)

(read-byte$ channel state)

(declare (ignore x2))

(mv ’fail state)))

((or (= (the-fixnum x1) 245)

(= (the-fixnum x1) 246)

(= (the-fixnum x1) 247))

(mv-let (x2 state)

(read-byte$ channel state)

(declare (ignore x2))

(mv-let (x3 state)

(read-byte$ channel state)

(declare (ignore x3))

(mv-let (x4 state)

(read-byte$ channel state)

(declare (ignore x4))

(mv ’fail state)))))

(t

(mv ’fail state)))))))


