Bit-Blasting ACL2 Theorems

Sol Swords and Jared Davis

Centaur Technology, Inc.

November, 2011

Some guy on the Internet says that this C code counts bits:

v = v - ((v >> 1) & 0x55555555); v = (v & 0x33333333) + ((v >> 2) & 0x33333333); c = ((v + (v >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;

He's right.

Can you prove it in ACL2?

What would it look like?

Our proof, by bit-blasting

```
(def-gl-thm fast-logcount-32-correct
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x) (logcount x))
:g-bindings '((x ,(g-int 0 1 33))))
```

Bit-blasting lets you automatically prove "finite" theorems

- You get a real ACL2 theorem (no trust-tags)
- You get counterexamples to non-theorems
- You don't need to understand the implementation
- You don't have to change the proof when the implementation changes

We have used it to verify industrial hardware designs

- Scalar and packed integer operations (easy)
- Float/integer conversions, comparisons (easy)
- Floating point addition (requires case splitting)
- Integer and FP multiplication (requires decomposition)

- 1. How bit-blasting works
 - Bit-level objects
 - Symbolic objects
 - Computing with symbolic objects
 - Proving theorems with symbolic execution
- 2. How to get started!

Imagine representing integers as lists of bits

(t nil t nil) means 5 (t t t nil nil nil) means 7

And writing functions that operate on this representation

Bit-level ACL2 objects

We could extend this idea to represent other ACL2 objects

(:int	t nil t nil)	means 5
(:char	t nil)	means # A
(:bool	t)	means t

And write bit-level analogues of the ACL2 primitives

```
(defun my-integerp (x)
  (equal (car x) :int))
```

```
(defun my-ifix (x)
  (if (my-integerp x) x '(:int nil)))
```

Symbolic objects are like this, but have Boolean expressions instead of bits

(:bool <i>X</i> ₀)	can mean t or nil
(:int X_0 false true false)	can mean 4 or 5
(:int $X_0 X_1$ false false)	can mean 0, 1, 2, or 3
(:int $X_0 \neg X_0$ false)	can mean 1 or 2
(:int $(X_0 \wedge X_1)$ false)	can mean 0 or 1

The value of a symbolic object depends on an environment

 $eval(symbolic object, env) \rightarrow ACL2 object$

The environment just binds X_0 , X_1 , ..., to t or nil

Computing with symbolic objects

You can compute with symbolic objects without an environment.

Example 1

■ Let A = (:int X_0 false); 0 or 1 ■ Let B = (:int X_1 false); 0 or 1 ■ A & B = (:int $(X_0 \land X_1)$ false); 0 or 1

Example 2

• Let A = (:int *true* X_0 *false*); 1 or 3 • Let B = (:int X_1 *true false*); 2 or 3 • A & B = (:int X_1 X_0 *false*); 0, 1, 2, or 3

Example 3

■ Let A = (:int X_0 X_1 false) ; 0, 1, 2, or 3 ■ Let B = (:int X_2 false false) ; 0 or 1 ■ A == B = (:bool $(X_0 \leftrightarrow X_2) \land \neg X_1$) ; t or nil

The main change we need

```
(defun bitlist-logand (x y)
  ;; x and y are lists of bits
  (if (or (atom x) (atom y))
      nil
    (cons (and (car x) (car y))
          (bitlist-logand (cdr x) (cdr y))))
(defun symbolic-bitlist-logand (x y)
  ;; x and y are lists of Boolean expressions
  (if (or (atom x) (atom y))
      nil
    (cons (and-exprs (car x) (car y))
          (symbolic-bitlist-logand (cdr x) (cdr y)))))
```

Symbolic execution

We write symbolic analogues for most ACL2 primitives

Correctness example:

```
(eval (symbolic-logand x y) env)
 =
(logand (eval x env) (eval y env))
```

We write a McCarthy style interpreter that can symbolically execute terms

 $\mathsf{interp}(\mathit{term}, \mathit{symbolic} \ \mathit{bindings}) o \mathit{symbolic} \ \mathit{object}$

Example:

```
(interp '(consp x) '((x . x<sub>sym</sub>)))
 =
(symbolic-consp x<sub>sym</sub>)
```

We have certain symbolic objects

 $(:bool X_0)$ can mean t or nil $(:int X_0 false true false)$ can mean 4 or 5

The value of a symbolic object depends on an environment

 $eval(symbolic object, env) \rightarrow ACL2 object$

But we can compute on them without an environment.

interp(*term*, *symbolic bindings*) → *symbolic object*

Proving theorems by symbolic execution

Symbolic execution can be used as a proof procedure ("bit blasting") Example:

- Choose a symbolic object, x_{sym} , that covers the hypothesis, i.e., $\forall x$, (unsigned-byte-p 32 x) \rightarrow (\exists env. (eval x_{sym} env) = x)
- Symbolically execute the conclusion on x_{sym} (interp '(equal (fast-logcount-32 x) (logcount x)) '((x . x_{sym})))
- Inspect the result. Can it evaluate to nil?
 - Yes You have just found a counterexample
 - No You have just proved the theorem

Proving the example theorem

We need a symbolic object x_{sym} that can represent every value that satisfies the hypothesis, i.e., $0, 1, \ldots, 2^{32} - 1$.

This is easy: Let $x_{sym} = (:int X_0 X_1 ... X_{31} X_{32})$ (yes, 33 bits) (def-gl-thm fast-logcount-32-correct

```
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x) (logcount x))
:g-bindings '((x ,(g-int 0 1 33))))
```

Proving ACL2 theorems by bit-blasting

Def-gl-thm is our interface for bit-blasting ACL2 theorems

- It is based on a verified clause processor (no trust tags)
- It gives you a real ACL2 defthm on success
- It gives you good counterexamples to non-theorems

It splits your proof into two parts:

- Coverage do your symbolic objects cover the whole hypothesis? (a "normal" ACL2 proof, usually automatic)
- Symbolic execution of the conclusion (automatic, but can be computationally hard)

To get started, see books/centaur/README

To learn to use it effectively, see the paper

- Optimizing GL execution
- Debugging performance problems
- Splitting proofs into cases
- Using AIG versus BDD representations
- Pointers to :doc topics and Sol's dissertation