Bit-Blasting ACL2 Theorems

Sol Swords and Jared Davis

Centaur Technology, Inc.

November, 2011

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 1/16

A simple challenge

Some guy on the Internet says that this C code counts bits:

v =v - ((v > 1) & 0x55555555);

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

c = ((v + (v > 4) & 0xOFOFOFQOF) * 0x01010101) >> 24;
He's right.

Can you prove it in ACL27?

What would it look like?

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 2 /16

Our proof, by bit-blasting

(defun fast-logcount-32 (v)
(let* ((v (- v (logand (ash v -1) #x55555555)))
(v (+ (logand v #x33333333)
(logand (ash v -2) #x33333333))))
(ash (32*% (logand (+ v (ash v -4)) #xOFOFOFOF)

#x01010101)
-24)))
(def-gl-thm fast-logcount-32-correct
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x) (logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 3/16

The bit-blasting approach

Bit-blasting lets you automatically prove “finite” theorems
= You get a real ACL2 theorem (no trust-tags)
= You get counterexamples to non-theorems
® You don't need to understand the implementation

= You don't have to change the proof when the implementation changes

We have used it to verify industrial hardware designs
m Scalar and packed integer operations (easy)
» Float/integer conversions, comparisons (easy)
» Floating point addition (requires case splitting)

» Integer and FP multiplication (requires decomposition)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 4 /16

The rest of this talk

1. How bit-blasting works
m Bit-level objects
= Symbolic objects
m Computing with symbolic objects

m Proving theorems with symbolic execution

2. How to get started!

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 5/ 16

Bit-level integers

Imagine representing integers as lists of bits

(t nil t nil) means 5
(t t t nil nil nil) means 7

And writing functions that operate on this representation

(defun bitlist-logand (x y)
(if (or (atom x) (atom y))
nil
(cons (and (car x) (car y))
(bitlist-logand (cdr x) (cdr y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011

Bit-level ACL2 objects

We could extend this idea to represent other ACL2 objects

(:int t nil t nil) means 5
(:char t nil ...) means #\A
(:bool t) means t

And write bit-level analogues of the ACL2 primitives
(defun my-integerp (x)
(equal (car x) :int))

(defun my-ifix (x)
(if (my-integerp x) x ’(:int nil)))

(defun my-logand (x y)
(cons :int (bitlist-logand (cdr (my-ifix x))
(cdr (my-ifix y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 7 /16

Symbolic objects

Symbolic objects are like this, but have Boolean expressions instead of bits

(:bool Xp) can mean t or nil
(:int Xo false true false) can mean 4 or 5
(:int Xo Xi false false) canmean 0, 1,2, 0or3
(:int Xg —Xq false) can mean 1 or 2
(:int (Xo A X1) false) can mean 0 or 1

The value of a symbolic object depends on an environment

eval(symbolic object, env) — ACL2 object

The environment just binds Xy, Xi, ..., to t or nil

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 8 /16

Computing with symbolic objects

You can compute with symbolic objects without an environment.

Example 1
mLet A = (iint Xp false) ; 0 or 1
mLlet B = (iint Xy false) ; 0 or 1

m A&B=(int (XoAX1) false) 0or1

Example 2
m Llet A = (iint true Xy false) ; 1or3
m Let B = (iint X1 true false) ; 2 or3
B A&B=(int X; Xo false) ; 0, 1,2 or3

Example 3
mletA =(Cint Xo Xi false) 0, 1,2 or3
mletB = (int Xy false false) ;0or1

m A=——B= (:b00| (Xo > X2) A —\Xl) ; tornil

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 9 /16

The main change we need

(defun bitlist-logand (x y)
;; ¢ and y are lists of bits
(if (or (atom x) (atom y))
nil
(cons (and (car x) (car y))
(bitlist-logand (cdr x) (cdr y)))))

—

(defun symbolic-bitlist-logand (x y)
;5 ¢ and y are lists of Boolean expressions
(if (or (atom x) (atom y))
nil
(cons (and-exprs (car x) (car y))
(symbolic-bitlist-logand (cdr x) (cdr y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 10 / 16

Symbolic execution

We write symbolic analogues for most ACL2 primitives

Correctness example:

(eval (symbolic-logand x y) env)

(logand (eval x env) (eval y env))

We write a McCarthy style interpreter that can symbolically execute terms

interp(term, symbolic bindings) — symbolic object
Example:

(interp ’(consp x) ’((x . Xgym)))

(symbolic-consp Xsym)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 11 /16

Review!

We have certain symbolic objects

(:bool Xp) can mean t or nil
(:int Xo false true false) can mean 4 or 5

The value of a symbolic object depends on an environment

eval(symbolic object,env) — ACL2 object

But we can compute on them without an environment.

interp(term, symbolic bindings) — symbolic object

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 12 /16

Proving theorems by symbolic execution

Symbolic execution can be used as a proof procedure (“bit blasting™)

Example:

(implies (unsigned-byte-p 32 x)
(equal (fast-logcount-32 x)
(logcount x)))

= Choose a symbolic object, xs,m, that covers the hypothesis, i.e.,

Vx, (unsigned-byte-p 32 x) — (3 env . (eval Xgm, env) = x)

= Symbolically execute the conclusion on xsm
(interp ’(equal (fast-logcount-32 x) (logcount x))
P . Xeym)))

m Inspect the result. Can it evaluate to nil?
= Yes — You have just found a counterexample
= No — You have just proved the theorem

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 13 / 16

Proving the example theorem

(implies (unsigned-byte-p 32 x)
(equal (fast-logcount-32 x)
(logcount x)))

We need a symbolic object x5, that can represent every value that
satisfies the hypothesis, i.e., 0,1,...,23 — 1.

This is easy:
Let Xsym = (:int Xo X1 ... X31 X32) (yes, 33 bitS)

(def-gl-thm fast-logcount-32-correct
:hyp (unsigned-byte-p 32 x)
:concl (equal (fast-logcount-32 x) (logcount x))
:g-bindings ‘((x ,(g-int 0 1 33))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 14 / 16

Proving ACL2 theorems by bit-blasting

Def-gl-thm is our interface for bit-blasting ACL2 theorems
m It is based on a verified clause processor (no trust tags)
m It gives you a real ACL2 defthm on success

m It gives you good counterexamples to non-theorems

It splits your proof into two parts:
m Coverage — do your symbolic objects cover the whole hypothesis?
(a “normal” ACL2 proof, usually automatic)

m Symbolic execution of the conclusion
(automatic, but can be computationally hard)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 15 / 16

You can use this stuff!

To get started, see books/centaur/README

To learn to use it effectively, see the paper
Optimizing GL execution

Debugging performance problems

[

[

m Splitting proofs into cases

m Using AIG versus BDD representations
[

Pointers to :doc topics and Sol's dissertation

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 16 / 16

