
Bit-Blasting ACL2 Theorems

Sol Swords and Jared Davis

Centaur Technology, Inc.

November, 2011

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 1 / 16

A simple challenge

Some guy on the Internet says that this C code counts bits:

v = v - ((v >> 1) & 0x55555555);

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

c = ((v + (v >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;

He’s right.

Can you prove it in ACL2?

What would it look like?

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 2 / 16

Our proof, by bit-blasting

(defun fast-logcount-32 (v)

(let* ((v (- v (logand (ash v -1) #x55555555)))

(v (+ (logand v #x33333333)

(logand (ash v -2) #x33333333))))

(ash (32* (logand (+ v (ash v -4)) #x0F0F0F0F)

#x01010101)

-24)))

(def-gl-thm fast-logcount-32-correct

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x) (logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 3 / 16

The bit-blasting approach

Bit-blasting lets you automatically prove “finite” theorems

You get a real ACL2 theorem (no trust-tags)

You get counterexamples to non-theorems

You don’t need to understand the implementation

You don’t have to change the proof when the implementation changes

We have used it to verify industrial hardware designs

Scalar and packed integer operations (easy)

Float/integer conversions, comparisons (easy)

Floating point addition (requires case splitting)

Integer and FP multiplication (requires decomposition)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 4 / 16

The rest of this talk

1. How bit-blasting works

Bit-level objects

Symbolic objects

Computing with symbolic objects

Proving theorems with symbolic execution

2. How to get started!

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 5 / 16

Bit-level integers

Imagine representing integers as lists of bits

(t nil t nil) means 5

(t t t nil nil nil) means 7

And writing functions that operate on this representation

(defun bitlist-logand (x y)

(if (or (atom x) (atom y))

nil

(cons (and (car x) (car y))

(bitlist-logand (cdr x) (cdr y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 6 / 16

Bit-level ACL2 objects

We could extend this idea to represent other ACL2 objects

(:int t nil t nil) means 5

(:char t nil ...) means #\A
(:bool t) means t

And write bit-level analogues of the ACL2 primitives

(defun my-integerp (x)

(equal (car x) :int))

(defun my-ifix (x)

(if (my-integerp x) x ’(:int nil)))

(defun my-logand (x y)

(cons :int (bitlist-logand (cdr (my-ifix x))

(cdr (my-ifix y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 7 / 16

Symbolic objects

Symbolic objects are like this, but have Boolean expressions instead of bits

(:bool X0) can mean t or nil
(:int X0 false true false) can mean 4 or 5
(:int X0 X1 false false) can mean 0, 1, 2, or 3
(:int X0 ¬X0 false) can mean 1 or 2
(:int (X0 ∧ X1) false) can mean 0 or 1

The value of a symbolic object depends on an environment

eval(symbolic object, env)→ ACL2 object

The environment just binds X0, X1, . . . , to t or nil

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 8 / 16

Computing with symbolic objects

You can compute with symbolic objects without an environment.

Example 1

Let A = (:int X0 false) ; 0 or 1

Let B = (:int X1 false) ; 0 or 1

A & B = (:int (X0 ∧ X1) false) ; 0 or 1

Example 2

Let A = (:int true X0 false) ; 1 or 3

Let B = (:int X1 true false) ; 2 or 3

A & B = (:int X1 X0 false) ; 0, 1, 2, or 3

Example 3

Let A = (:int X0 X1 false) ; 0, 1, 2, or 3

Let B = (:int X2 false false) ; 0 or 1

A == B = (:bool (X0 ↔ X2) ∧ ¬X1) ; t or nil

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 9 / 16

The main change we need

(defun bitlist-logand (x y)

;; x and y are lists of bits

(if (or (atom x) (atom y))

nil

(cons (and (car x) (car y))

(bitlist-logand (cdr x) (cdr y)))))

=⇒

(defun symbolic-bitlist-logand (x y)

;; x and y are lists of Boolean expressions

(if (or (atom x) (atom y))

nil

(cons (and-exprs (car x) (car y))

(symbolic-bitlist-logand (cdr x) (cdr y)))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 10 / 16

Symbolic execution

We write symbolic analogues for most ACL2 primitives

Correctness example:

(eval (symbolic-logand x y) env)

=
(logand (eval x env) (eval y env))

We write a McCarthy style interpreter that can symbolically execute terms

interp(term, symbolic bindings)→ symbolic object

Example:

(interp ’(consp x) ’((x . xsym)))
=

(symbolic-consp xsym)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 11 / 16

Review!

We have certain symbolic objects

(:bool X0) can mean t or nil
(:int X0 false true false) can mean 4 or 5

The value of a symbolic object depends on an environment

eval(symbolic object, env)→ ACL2 object

But we can compute on them without an environment.

interp(term, symbolic bindings)→ symbolic object

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 12 / 16

Proving theorems by symbolic execution

Symbolic execution can be used as a proof procedure (“bit blasting”)

Example:

(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)

(logcount x)))

Choose a symbolic object, xsym, that covers the hypothesis, i.e.,

∀x , (unsigned-byte-p 32 x) → (∃ env . (eval xsym env) = x)

Symbolically execute the conclusion on xsym

(interp ’(equal (fast-logcount-32 x) (logcount x))

’((x . xsym)))

Inspect the result. Can it evaluate to nil?
Yes — You have just found a counterexample
No — You have just proved the theorem

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 13 / 16

Proving the example theorem

(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)

(logcount x)))

We need a symbolic object xsym that can represent every value that
satisfies the hypothesis, i.e., 0, 1, . . . , 232 − 1.

This is easy:
Let xsym = (:int X0 X1 . . .X31 X32) (yes, 33 bits)

(def-gl-thm fast-logcount-32-correct

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x) (logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 14 / 16

Proving ACL2 theorems by bit-blasting

Def-gl-thm is our interface for bit-blasting ACL2 theorems

It is based on a verified clause processor (no trust tags)

It gives you a real ACL2 defthm on success

It gives you good counterexamples to non-theorems

It splits your proof into two parts:

Coverage — do your symbolic objects cover the whole hypothesis?
(a “normal” ACL2 proof, usually automatic)

Symbolic execution of the conclusion
(automatic, but can be computationally hard)

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 15 / 16

You can use this stuff!

To get started, see books/centaur/README

To learn to use it effectively, see the paper

Optimizing GL execution

Debugging performance problems

Splitting proofs into cases

Using AIG versus BDD representations

Pointers to :doc topics and Sol’s dissertation

Swords and Davis (Centaur Technology) Bit-Blasting ACL2 Theorems November, 2011 16 / 16

