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Use of Formal Verification
at Centaur Technology

Warren A. Hunt, Jr., Sol Swords,
Jared Davis, Anna Slobodova

1.1 Introduction

We have developed a formal-methods-based hardware verification toolflow
to help ensure the correctness of our X86-compatible microprocessors. Our
toolflow uses the ACL2 theorem-proving system as a design database and a
verification engine. We verify Verilog designs by first translating them into a
formally defined hardware description language, and then using a variety of
automated verification algorithms controlled by theorem-proving scripts.

In this chapter, we describe our approach to verifying components of VIA
Centaur’s 64-bit Nano, X86-compatible microprocessor. We have success-
fully verified a number of media-unit operations, such as the packed ad-
dition/subtraction instructions. We have verified the integer multiplication
unit, and we are in the process of verifying microcode sequences that perform
arithmetic operations.

1.1.1 Overview of Verification Methodology

In our verification process, we first translate the Verilog RTL source code of
Centaur’s design into EMOD, a formally defined HDL. This process captures a
design as an ACL2 object that can be interpreted by an ACL2-based HDL
simulator. The HDL simulator is used both to run concrete test cases and to
extract symbolic representations of the circuit logic of blocks of interest. We
then use a combination of theorem proving and equivalence checking to prove
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that the functionality of the circuit in question is equivalent to a higher-level
specification. A completed verification yields an ACL2 theorem that precisely
states what we have proven.

We have developed a deep-embedding of our hardware description lan-
guage, EMOD [13], in the ACL2 logic. We describe the EMOD language in Sec-
tion 1.4.1. Our implementation includes a syntax checker for well-formed
EMOD modules and an interpreter that gives meaning to such modules. The
EMOD interpreter can operate in several different modes to perform concrete or
symbolic simulations, analyze dependencies, and estimate delays. Simulations
may use either a Boolean or four-valued logic mode, and symbolic simulations
may use either binary-decision diagrams (BDDs) [7] or and-inverter graphs
(AIGs) as the representation for symbolic bits. We believe our approach to
representing the hardware design reduces the risk of translation errors, since
we may perform co-simulation between Verilog and EMOD to ensure the ve-
racity of the translation. We can also translate the design as represented in
the EMOD language back to Verilog.

Our Verilog translator consists of a parser and a series of code transfor-
mations that simplify the design until it can be be easily translated into
the EMOD language, which lacks features such as continuous assignments and
always blocks. We describe the translator in Section 1.2.

To prove that output from a hardware simulation is equivalent to that pro-
duced by a specification function, we produce BDDs representing both the
hardware and the specification outputs, and compare them for equivalence.
We use case-splitting to avoid certain BDD-size explosions. We sometimes
use AIGs as an intermediate form before creating the BDDs to avoid size
explosions. To produce ACL2 theorems using these methods, we have cre-
ated a verified symbolic execution framework that uses these procedures. We
describe our proof methodology in Section 1.3.

1.1.2 Timeline

The integration of formal methods into Centaur’s design methodology has
been ongoing for several years. Hunt first met with Centaur representatives
in April, 2007. This led to Hunt and Swords to joining Centaur in June of
2007, to see if our existing (ACL2-based) tools could be usefully deployed on
Centaur verification problems. Our use of formal methods is not new, and
AMD [19] has been using ACL2 for many years for floating-point hardware
verification. However, there are several things that differentiate our effort
from all others: the Centaur design is converted into our EMOD formalized
hardware description language (described later), our verification (BDD and
AIG) algorithms are themselves verified, and all of our claims are all checked
as ACL2 theorems.
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The use of formal methods to aid hardware design has been ongoing for
many years. Possibly the earliest adopter was IBM with equivalence check-
ing mechanisms that they developed in the early 1980s; IBM protected these
mechanisms as trade secrets. With the development of simple microproces-
sor verification examples, such as the FM8501 [10] and the VIPER [6], and
introduction of BDDs [7], commercial organizations started integrating some
use of formal methods into their design flow. A big impetus for the use of
formal methods came from the Intel FDIV bug [18].

Work that allowed us to get an immediate start was just being finished
when our Centaur-based effort began. Boyer and Hunt had implemented
BDDs [4, 5] with an extended version of ACL2 that included unique object
representation and function memoization [4]. Separately, Hunt and Reeber
had previously embedded the DE2 HDL into ACL2 [11], and this greatly
influenced the development of the EMOD HDL.

Our initial efforts were directed along two fronts: analyzing microcode for
integer division and verifying the floating-point addition/subtraction hard-
ware. Our analysis of the microcode for the integer divide algorithm involved
creating an abstraction of the microcode with ACL2 functions and then using
the ACL2 theorem-prover to mechanically check that our model of the divide
microcode computes the correct answer. This effort discovered an anomaly
that was subsequently corrected.

Our work on the verification of the floating-point addition/subtraction
hardware was much more involved. Because of the size of the design—some
34,000 lines of Verilog—it was necessary for us to create a translator from
Verilog into our EMOD hardware description language. We enhanced a Verilog
parser, written by Terry Parks (of Centaur), so that it emitted an EMOD-
language version of the floating-point hardware design; this translator created
an EMOD-language representation of the entire module hierarchy, including all
interface and wire names. The semantics of the EMOD language are given by the
EMOD simulator which allows an EMOD-language-based design to be simulated
or symbolically simulated with a variety (e.g., BDDs, AIGs) of mechanisms.
Simultaneously, we developed an extension to ACL2 that provides a symbolic
simulator for the entire ACL2 logic; this system was called G. Given these
components, we were able to attempt the verification of Centaur’s designs;
this was done by comparing the symbolic equations produced by the EMOD

HDL symbolic simulator to the equations produced by the G-based symbolic
simulation of our ACL2 floating-point specifications.

Our verification of Centaur’s floating-point addition/subtraction instruc-
tions led to the discovery of two design flaws: for two of the four floating-point
adders, the floating-point control flag inputs arrived one cycle early; and for
one pair of 80-bit numbers (described more fully later) the sum/difference
was incorrect. Both of these very subtle problems were fixed. This work was
completed within the first year of our efforts at Centaur. This effort strained
our Verilog translator and illuminated areas where we wanted to better inte-
grate symbolic simulation into the ACL2 system.
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In the summer of 2008, Davis arrived and began developing a more capable
Verilog translator named VL. The new translator was itself written in ACL2,
and it was designed with simplicity and assurance in mind. The translator
has provisions for translating Verilog annotations and property specifications
into the EMOD language.

Starting in the summer of 2008, Swords began an effort to build a verified
version of the ACL2 G symbolic simulator, called GL (for G in the Logic).
This new system represents symbolic ACL2 expressions as ACL2 data ob-
jects, which allows proofs to be carried out which show such objects are
manipulated correctly.

In the fall of 2008, Slobodova joined Centaur as manager of the formal
verification team, and began using these tools to verify a number of differ-
ent (integer, floating-point) multiplier implementations. These multipliers are
actually quite complicated as they can be reconfigured on a clock-by-clock
basis to create different (e.g., four 32x32-bit or one 64x64-bit) multipliers.
The verification of the multipliers has stressed the capacity of our tools in a
variety of ways and this effort has led to many improvements in capacity and
speed.

By the spring of 2009, the outcome of the two efforts mentioned above
resulted in the replacement of our original prototype Verilog translator with
VL, and the replacement of the G system with GL, a verified symbolic
simulator for ACL2 functions. All of our proofs are now carried out using
these new tools.

1.1.3 Centaur Media Unit

As an example to illustrate our methodology, we will discuss our verification
of the floating-point addition instructions implemented in the media unit of
Centaur’s CPU design. The part of the media unit that handles floating-point
addition and subtraction is called the fadd unit; this unit is highly optimized
for low latency arithmetic operations and implements SIMD 32- and 64-bit
floating-point additions as well as scalar X87 80-bit floating point additions.
All floating-point addition operations are performed with a two-cycle latency;
the fadd unit can also forward results internally so that operations may be
chained.

The fadd RTL-level design is composed of 680 modules, which we convert
from Verilog into our EMOD hardware description language; it is this EMOD form
of Centaur’s design that we subject to analysis. The physical implementation
is composed of 432,322 transistors, almost evenly split between PMOS and
NMOS devices. This represents less than 5% of the total transistors in the
implementation, but its 33,700 line Verilog description represents more than
6% of the CN design specification. The fadd unit has 374 output signals
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Fig. 1.1 Floorplan of CN Media Unit

and 1074 inputs including 26 clock inputs. Multiple clock inputs are used to
manage power usage.

The fadd unit is composed of four adders: two 32-bit units, one 64-bit
unit, and one 80-bit unit (see Fig. 1.2). When a 32-bit packed addition is
requested, all four units are used, and the 64-bit and 80-bit adders each take
32-bit operands and produce a 32-bit results. When a 64-bit packed addition
is requested, the 64-bit and 80-bit adders each take 64-bit operands and
produce a 64-bit result. The fadd unit can only add one pair 80-bit operands
per clock cycle. Other combinations are possible when a memory-resident
operand is added to a register-resident, X87-style, 80-bit operand; the fadd

unit also manages such X87-mode, mixed-size addition requests.
There are multiple paths through the addition logic that operate in par-

allel. The relevant path for a particular pair of operands is determined by
characteristics such as the operand types (NaN, zero, denormal, etc.) and
their sign and exponent bits, and the result from that path is selected as the
result of the addition.
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1.2 Modeling Effort

The specification of the CN processor consists of over half a million lines of
Verilog; this Verilog is frequently updated by the logic designers. To bring
this design into our EMOD HDL, we have developed a translator named VL.
This is a challenge since Verilog is such a large language with no formal
semantics. Our work is based on the IEEE Verilog 1364-2005 standard [1], and
we do not yet support the SystemVerilog extensions. This standard usually
explains things well, but sometimes it is vague; in these cases, we have carried
out thousands of tests and attempted to emulate the behavior of Cadence’s
Verilog simulator.

VL needs to produce a “sound” translation or our verification results may
be meaningless. Because of this, we have written VL in the purely-functional
programming language of the ACL2 theorem prover, and our emphasis from
the start has been on correctness rather than performance. For instance, our
parser is written in a particularly naive way: to begin, each source file is read,
in its entirety, into a simple list of extended characters, which associate each
character with its filename and position. This makes the remaining steps in
the parsing process ordinary list-transforming functions,

• read : filename → echar list
• preprocess : echar list → echar list
• lex : echar list → token list
• eat-comments : token list → token list × comment map
• parse : token list → module list
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The parser itself is written in a conventional, recursive-descent style, which
is a good match for Verilog since keywords like module, assign, etc., usu-
ally say what comes next. Since the entire list of tokens has been computed
before parsing begins, we can take advantage of arbitrary look-ahead, and
backtracking is completely straightforward.

This simple-minded approach lends itself well to informal validation. For
instance, since we actually construct each intermediate list, we can add asser-
tions relating them to one another, e.g., we can test that flattening the parsed
input is equal to the original input. Since our functions operate on lists, in-
stead of files, it is very easy to write unit tests directly in our source code,
and we have developed a number of these tests. Furthermore, since these rou-
tines are written in the ACL2 theorem prover, we can actually prove some
theorems about the parser, e.g., on success it produces a list of syntactically
well-formed modules.

1.2.1 Conversion to the EMOD Language

To implement the translation into EMOD, we adopt a program-transformation-
like [23] style: to begin with, the entire parse tree for the Verilog sources is
constructed; we then apply a number of rewriting passes to the tree which
result in simpler Verilog versions of each module. The final conversion into
EMOD is really almost incidental, with the resulting EMOD modules differing
from our most-simplified Verilog modules only in syntax.

Each transformation tends to be fairly short and easy to understand, and
can be studied in isolation, either informally or with the theorem prover. Since
each rewriting pass produces well-formed Verilog modules, we can simulate
the original and simplified Verilog modules against each other, either at the
end of the simplification process or at some intermediate point.

We can also run a number of common sanity checks after each rewrite to
catch any gross errors. These sorts of checks serve to answer questions such
as:

• Are only supported constructs used?
• Are only defined modules instanced?
• Is each module’s namespace free of collisions?
• Are the ports compatible with the port declarations?
• Are the port and wire declarations compatible?
• Have we determined the size of every declaration?
• Have the widths and signs of all expressions been determined?
• Are the widths of the arguments to every submodule correct?
• Are the indices for every bit- and part-select in bounds?

These sorts of checks are often useful as “guards” (preconditions) for our
transformation steps. In a few cases, we also prove, using ACL2, that some
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of these properties will be satisfied after a certain transformation is run. But
usually we do not try to do this because it is easier to just run the checks
after each transformation.

We now present an overview of our transformation sequence.

1.2.1.1 Unparameterization.

Verilog modules can have parameters, e.g., an adder module might take in-
put wires of some arbitrary width, and other modules can then instantiate
adder with different widths, say 8, 16, and 32. Our first transformation is
to eliminate parametrized modules, e.g., we would introduce three new mod-
ules, adder$width=8, adder$width=16, and adder$width=32, and change
the instances of adder to point to these new modules as appropriate.

1.2.1.2 Declaring Implicit and Port Wires.

Verilog permits undeclared identifiers to be used as one-bit wires. We would
like to prohibit this to reduce the chance of typos (a la Perl’s use strict),
but this idea is unpopular so we only issue warnings. In this transformation,
we add a wire declaration for each undeclared wire and each port which has
been declared to be an input or output but which has not also been declared
as a wire.

1.2.1.3 Standardizing Argument Lists.

Modules may be instantiated using either positional or named argument lists.
For instance, given a module M with ports a, b, and c, the following instances
of M are equivalent:

M my instance(1, 2, 3);

M my instance(.b(2), .c(3), .a(1));

In this transformation, we convert all instances to the positional style and
annotate the arguments as inputs or outputs.

1.2.1.4 Resolving Ranges.

Wires and registers in Verilog can have widths. For instance,
wire [3:0] w;

declares a four-bit wire, w, whose bits are w[3] through w[0]. Unparameter-
ization sometimes leaves us with expressions here, e.g., in the adder module,
we might have

wire [width-1:0] a;
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which, in adder$width=8, will become
wire [8-1:0] a;

We now resolve these expressions to constants. The specification seems
vague about how these expressions are to be evaluated (e.g., with respect
to widths and signedness), so we are quite careful and only allow signed,
32-bit, overflow-free computations of +, -, and *.

1.2.1.5 Operator Rewriting.

We can reduce the variety of operators we need to deal with by simply rewrit-
ing some operators away. In particular, we perform rewrites such as

a && b → (|a) & (|b),
a != b → |(a ^ b), and
a < b → ∼(a >= b).

This process eliminates all logical operators (&&, ||, and !), equality com-
parisons (== and !=), negated reduction operators (∼&, ∼|, and ∼^), and
standardizes all inequality comparisons (<, >, <=, and >=) to the >= format.
We have a considerable simulation test suite to validate these rewrites.

1.2.1.6 Sign and Width Computation.

We now annotate every expression with its type (sign) and width. This is
tricky. The rules for determining widths are quite complicated, and if they are
not properly implemented then, for instance, carries might be inappropriately
kept or dropped. It took a lot of experimenting with Cadence and many
readings of the standard to be sure we had it right.

1.2.1.7 Expression Splitting.

After the widths have been computed, we introduce explicit wires to hold the
intermediate values in expressions,

assign w = (a + b) - c;

→
wire [width:0] newname;

assign newname = a + b;

assign w = newname - c;
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We also split inputs to module and gate instances,
my mod my inst(a + b, . . .);

→
wire [width:0] newname;

assign newname = a + b;

my mod my inst(newname, . . .);

1.2.1.8 Making Truncation Explicit.

Verilog allows for implicit truncations in assignment statements; for instance,
one can assign the result of a five-bit addition a + b to a three-bit bus (col-
lection of wires), w. We now make these truncations explicit by introducing
a new wire for the intermediate result, for example,

wire [4:0] newname;

assign newname = a + b;

assign w = newname[2:0];

We print warnings about such truncations since they are not good form and
may point to problems.

1.2.1.9 Eliminating Assignments.

We now replace all assignments with module instances. First, we develop a
way to generate modules to perform each operation at a given width, and
we write these modules using only gates and submodule instances. Next, we
replace each assignment with an instance of the appropriate module, e.g.,

assign w = a + b;

→
VL 13 BIT PLUS newname(w, a, b);

This is one of our more complicated transformations, so we have devel-
oped a test suite which, for instance, uses Cadence to exhaustively test
VL 4 BIT PLUS against an ordinary addition operation. We are careful to
handle the X and Z behavior appropriately. We go out of our way so that all
of w’s bits become X if any bit of a or b is X or Z, even though this makes
our generated adders more complex.

1.2.1.10 Eliminating Instance Arrays.

Gate and module instances can be put into arrays,
and foo [13:0] (o, a, b);

declares fourteen and-gates. We now convert such arrays into explicit in-
stances, such as, foo0, . . . , foo13. The rules for partitioning the bits of the
arguments are not too difficult.
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1.2.1.11 Eliminating Higher-Arity Gates.

Primitive gate instances in Verilog can use variable-length argument lists;
not multinot(o1, . . ., on, i);

represents a not gate with one input, i, and n outputs, o1, . . . on. We now
split these up into lists of gates,

not multinot 1(o1, i);

. . .

not multinot n(on, i);

Afterwards, each not and buf gate has one input and output, and each and,
or, nand, nor, xor, and xnor gate has two inputs and one output.

We have left out a few other rewrites like naming any unnamed instances,
eliminating supply wires, and some minor optimizations. But the basic idea is
that, taken all together, our simplifications leave us with a new list of modules
where only simple gate and module instances are used. This design lets us
focus on each task separately instead of needing to consider all of Verilog at
once.

1.2.2 Modeling Flow

It takes around twenty minutes to run our full translation process on the
whole of CN. A lot of memory is needed, and we ordinarily use a machine
with 64 GB of physical memory to do the translation. Not all modules can be
translated successfully (e.g., because they use constructs which are not yet
supported). However, a large portion of the chip is fully supported.

The translator is run against multiple versions of the chip each night, and
the resulting EMOD modules are stored on disk into files that can be loaded
into an ACL2 executable in seconds. This process also results in internal
web pages that allow the original source code, translated source code, and
warnings about each module to be easily viewed, and some other Lint-like
reports for the benefit of the logic designers and verification engineers.

1.3 Verification Method

Our verification efforts so far have concentrated on proving the functional
correctness of instructions running on certain execution units; that is, show-
ing that they operate equivalently to a high-level specification. However, we
believe our methodology would also be useful for proving non-functional prop-
erties of the design.
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Fig. 1.3 Verification Method

Our specifications are functions written in ACL2. They are executable,
and can therefore be used to run tests against the hardware model or a
known implementation. In most cases, we write specifications that operate
at the integer level on vectors of signals. Often these specifications are sim-
ple enough that we are satisfied that they are correct by examination; by
comparison with the RTL designs of the corresponding hardware units, they
are very small indeed. For floating-point addition we use a low-level integer-
based specification that is somewhat optimized for symbolic execution per-
formance and is relatively complicated compared to our other specifications.
However, this specification has been separately proven equivalent to a high-
level, rational-number-based specification. Before this proof was completed,
we had also tested the specification by running it on millions of inputs and
comparing the results to those produced by running the same floating-point
operations directly on the local CPU.

Figure 1.3 shows the verification methodology we used in proving the cor-
rectness of the fadd unit’s floating-point addition instructions. We compare
the result of symbolic simulations of an instruction specification and our
model of the fadd hardware. To obtain our model of the hardware, we trans-
late the fadd unit’s Verilog design into our EMOD hardware description lan-
guage. We then run an AIG-based symbolic simulation of the fadd model
using the EMOD symbolic simulator; the results of this simulation describe the
outputs of the fadd unit as 4-valued functions of the inputs, and we represent
these functions with AIGs. We then specialize these functions by setting in-
put control bits to values appropriate for the desired instruction. To compare
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these functions with those produced by the specification, we then convert
these AIGs into BDDs.

For many instructions, it is feasible to simply construct BDDs representing
the outputs as functions of the inputs, and we therefore may verify these
instructions directly using symbolic simulation. For the case of floating-point
addition, however, there is a capacity problem due to the shifted addition of
mantissas. We therefore use case splitting via BDD parametrization [2,16] to
restrict the analysis to subsets of the input space. This allows us to choose a
BDD variable ordering specially for each input subset, which is essential to
avoid this blowup. For each case split, we run a symbolic simulation of the
instruction specification and an AIG-to-BDD conversion of the specialized
AIGs for the instruction. If corresponding BDDs from these results are equal,
this shows that the fadd unit operates identically to the specification function
on the subset of the input space covered by the case split; otherwise, we can
generate counterexamples by analyzing the differences in the outputs.

For each instruction, we produce a theorem stating that evaluation of the
instruction-specialized AIGs yields the same result as the instruction’s spec-
ification function. This theorem is proven using the GL symbolic simulation
framework [5], which automates the process of proving theorems by BDD-
based symbolic execution, optionally with parametrized case-splitting. Much
of the complexity of the flow is hidden from the user by the automation pro-
vided by GL; the user provides the statement of the desired theorem and
high-level descriptions of the case split, symbolic simulation inputs, and suit-
able BDD variable orderings. BDD parametrization and the AIG to BDD
conversion algorithm are used automatically based on these parameters. The
statement of the theorem is independent of the symbolic execution mecha-
nism; it is stated in terms of universally quantified variables which collectively
represent a (concrete) input vector for the design.

In the following subsections we will describe in more detail the case-
splitting mechanism, the process of translating the Verilog design into an
EMOD description, and the methods of symbolic simulation used for the fadd

unit model and the instruction specification.

1.3.1 Case-Splitting and Parametrization

For verifying the floating-point addition instructions, we use case splitting to
avoid BDD blowup that occurs due to a non-constant shift of the operand
mantissas based on the difference in their exponents. By choosing case-
splitting boundaries appropriately, the shift amount can be reduced to a
constant. The strategy for choosing these boundaries is documented by oth-
ers [2, 8, 15, 20], and we believe it to be reusable for new designs.

In total, we split into 138 cases for single, 298 for double, and 858 for ex-
tended precision. Most of these cases cover input subsets over which the ex-
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ponent difference of the two operands is constant and either all input vectors
are effective additions or all are effective subtractions. Exponent differences
greater than the maximum shift amount are considered as a block. Special
inputs such as NaNs and infinities are considered separately. For performance
reasons, we use a finer-grained case-split for extended precision than for single
or double precision.

For each case split, we restrict the simulation coverage to the chosen subset
of the input space using BDD parametrization. This generates a symbolic
input vector (a BDD for each input bit) that covers exactly and only the
appropriate set of inputs; we describe BDD parametrization in more detail
in Sec. 1.4.3. Each such symbolic input vector is used in both an AIG-to-
BDD conversion and a symbolic simulation of the specification. The BDD
variable ordering is chosen specifically for each case split, thereby reducing
the overall size of the intermediate BDDs. No knowledge of the design was
used to determine the case-splitting approach.

1.3.2 Symbolic Simulation of the Hardware Model

We use the EMOD symbolic simulator to obtain Boolean formulas (AIGs) rep-
resenting the outputs of a unit in terms of its inputs. In such simulations,
we use a four-valued logic in which each signal may take values 1 (true), 0
(false), X (unknown), or Z (floating). This is encoded using two AIGs (onset
and offset) per signal. The Boolean values taken by each AIG determine the
value taken by the signal as in Fig. 1.4.

Offset

1 0

Onset
1 X 1

0 0 Z

Fig. 1.4

The fadd unit is mainly a pipeline, where each in-
struction is bounded by a fixed latency. To verify its in-
structions, we set all bits of the initial state to unknown
(X) values – the onsets and offsets of all non-clock in-
puts are set to free Boolean variables at each cycle, so
that every input signal but the clocks can take any of
the four values. We then symbolically simulate it for a
fixed number of cycles. This results in a fully general
formula for each output in terms of the inputs at each
clock cycle.

To obtain symbolic outputs for a particular instruction, we restrict the
fully-general output formulas by setting control signals to the values required
for performing the given instruction, and any signals we know to be irrelevant
to unknown (X) input values. This reduces the number of variables present
in these functions and keeps our result as general as possible. Constant prop-
agation with these specified values restricts the AIGs to formulas in terms
of only the inputs relevant to the instruction we are considering. For the
floating-point addition instructions of the fadd unit, the remaining inputs
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are the operands and the status register, which are the same as the inputs to
the specification function.

The theorems produced by our verifications typically say that for any well-
formed input vector, the evaluation of the instruction-specialized AIGs using
the variable assignment generated from the input vector is equivalent to the
output of the specification function on that input vector. Such a theorem
may often be proven automatically, given appropriate BDD ordering and
case-splitting, by the GL symbolic execution framework. GL has built in the
notion of symbolically evaluating an AIG using BDDs, effectively converting
the Boolean function representation from one form to the other. It uses the
procedure AIG2BDD described in Sec. 1.4.4 for this process; this algorithm
avoids computing certain intermediate-value BDDs that are irrelevant to the
final outputs, which helps to solve some BDD size explosions.

1.3.3 Symbolic Simulation of Specification

The specification for an instruction is generally an ACL2 function that takes
integers or Booleans representing some of the inputs to a block and produces
integers or Booleans representing the relevant outputs. Such functions are
usually defined in terms of word-level primitives such as shifts, bit-wise logical
operations, plus and minus. For the floating-point addition instructions, the
function takes integers representing the operands and the control register and
produces integers representing the result and the flag register. It is optimized
for symbolic simulation performance rather than referential clarity; however,
it has separately been proven equivalent to a high-level, rational arithmetic-
based specification of the IEEE floating-point standard [14]. Additionally,
it has been tested against floating-point instructions running on Intel and
AMD CPUs on many millions of input operand pairs, including a test suite
designed to detect floating-point corner-cases [22] as well as random tests.

To support symbolic simulation of our specifications, we developed the GL
symbolic execution framework for ACL2 [5]. The GL framework allows user-
provided ACL2 code to be symbolically executed using a BDD-based symbolic
object representation. The symbolic execution engine is itself verified in ACL2
so that its results provably reflect the behavior of the function that was
symbolically executed. GL also provides automation for proving theorems
based on such symbolic executions. Since these theorems do not depend on
any unverified routines, they offer the same degree of assurance as any proof
in ACL2: that is, they can be trusted if ACL2 itself can be trusted.

GL automates several of the steps in our verification methodology. For
a theorem in which we show that the evaluation of an AIG representation
of the circuit produces results equivalent to a specification function, the GL
symbolic execution encompasses the AIG-to-BDD transformation and the
comparison of the results, as well as the counterexample generation if there
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is a bug. If the proof requires case-splitting, the parametrization mechanism
is also handled by GL. The user specifies the BDD variable ordering used to
construct the symbolic input vectors, as well as the case split. To specify the
case split, the user provides a predicate which determines whether an input
vector is covered by a given case; like the theorem itself, this predicate is
written at the level of concrete objects. Typically, all computations at the
symbolic (BDD) level are performed by GL; the user programs only at the
concrete level.

1.3.4 Comparison of Specification to Hardware Model

For each case split in which the results from the symbolic simulations of the
specification and the hardware model are equal, this serves to prove that
for any concrete input vector drawn from the coverage set of the case, a
simulation of the fadd model will produce the same result as the instruction
specification. If the results are not equal, we can generate a counterexample
by finding a satisfying assignment for the XOR of two corresponding output
BDDs.

To prove the top-level theorem that the fadd unit produces the same result
as the specification for all legal concrete inputs, we must also prove that the
union of all such input subsets covers the entire set of legal inputs. This is
handled automatically by the GL framework. For each case, GL produces a
BDD representing the indicator function of the coverage set (the function
which is true on inputs that are elements of the set and false on inputs that
are not.) As in [8], the OR of all such BDDs is shown to be implied by the
indicator function BDD of the set of legal inputs; therefore, if an input vector
is legal then it is in one or more of the coverage sets of the case split.

1.4 Mechanisms used to Achieve the Verification

1.4.1 EMOD Symbolic Simulator

The EMOD interpreter is capable of running various simulations and analyses
on a hardware model; examples include concrete-value simulations in two- or
four-value mode, symbolic simulations in two- or four-value mode using AIGs
or BDDs as the Boolean function representations, and delay and dependency
analyses. The interpreter can also easily be extended with new analyses. The
language supports multiple clocks with different timing behavior, clock gat-
ing, and both latch- and flip-flop-based sequential designs as well as implicitly
clocked finite state machines. Its language for representing hardware models
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(defm *half-adder-module*

‘(:i (a b)

:o (sum carry)

:occs

((:u o0 :o (sum) :op ,*xor2* :i (a b))

(:u o1 :o (carry) :op ,*and2* :i (a b)))))

(defm *one-bit-cntr*

‘(:i (c-in reset-)

:o (out c)

:occs

((:u o2 :o out :op ,*ff* :i (sum-reset))

(:u o0 :o (sum c) :op ,*half-adder-module* :i (c-in out))

(:u o1 :o (sum-reset) :op ,*and2* :i (sum reset-)))))

Fig. 1.5 EMOD examples

is a hierarchical, gate-level HDL. A hardware model in the EMOD language is
either a primitive module (such as basic logic gates, latches and flip-flops),
or a hierarchically defined module, containing a list of submodules and a de-
scription of their interconnections. The semantics of primitive modules are
built into the EMOD interpreter, whereas hierarchical modules are simulated
by recursively simulating submodules.

A pair of small example modules, *half-adder-module* and *one-bit-

cntr*, are shown in Fig. 1.5. Both are hierarchically defined since they each
have a list of occurrences labelled :occs. Connectivity between submodules,
inputs, and outputs is defined by the :i (input) and :o (output) fields of the
modules and the occurrences. We translate the Verilog RTL design unit into
this format for our analysis.

A novel feature of our approach is that we can actually print the theorem
we are checking; thus, we have an explicit, circuit-model representation that
includes all of the original hierarchy, annotations, and wire names. This is
different than all other approaches of which we are aware; for instance, the
Forte tool reads Intel design descriptions and builds a FSM in its memory
image. Our representation allows us to search the design using database-like
commands to inspect our representation of Centaur’s design; this explicit
representation also enables easy tool construction for users as they can write
ACL2 programs to investigate the design in a manner of their choosing.

1.4.2 BDDs and AIGs

BDDs and AIGs both are data objects that represent Boolean-valued func-
tions of Boolean variables. We have defined evaluators for both BDDs and
AIGs in ACL2. The BDD (resp. AIG) evaluator, given a BDD (AIG) and an
assignment of Boolean values to the relevant variables, produces the Boolean
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value of the function it represents at that variable assignment. Here, for
brevity, we use the notation 〈x〉bdd (env) or 〈x〉aig (env) for the evaluation of
x with variable assignment env. We use the same notation when x is a list
to denote the mapping of 〈 〉bdd (env) over the elements of x.

The BDD and AIG logical operators are defined in the ACL2 logic and
proven correct relative to the evaluator functions. For example, the following
theorem shows the correctness of the BDD AND operator (written ∧bdd);
similar theorems are proven for every basic BDD and AIG operator such as
NOT, OR, XOR, and ITE:

〈a ∧bdd b〉bdd (env) = 〈a〉bdd (env) ∧ 〈b〉bdd (env)

1.4.3 Parametrization

BDD parametrization is also implemented in ACL2. The parametrization
algorithm is described in [2]; we describe its interface here. Assume that a
hardware model has n input bits. To run a symbolic simulation over all 2n

possible input vectors, one possible set of symbolic inputs is n distinct BDD
variables – say, v = [v0, . . . , vn−1]. This provides complete coverage because
〈v〉bdd (env) may equal any list of n Booleans. (In fact, if env has length n,
then 〈v〉bdd (env) = env.) However, to avoid BDD blowups, we sometimes run
symbolic simulations that each cover only a subset of the well-formed inputs.
For each such case, we first represent the desired coverage set as a BDD p,
so that an input vector w is in the coverage set if and only if 〈p〉bdd (w).
We then parametrize v by predicate p and use the resulting BDDs vp as
the symbolic inputs. These parametrized BDDs have the following important
properties, which have been proven in ACL2:

• The parametrized BDDs vp evaluate under every environment to a list of
Booleans satisfying the parametrization predicate p:

∀w . 〈p〉bdd (〈vp〉bdd (w))

Therefore, a concrete input vector is only covered by a symbolic simulation
of vp if it satisfies p.

• Any input vector u that does satisfy p is covered by vp; that is, there is
some environment under which vp evaluates to u:

〈p〉bdd (u) ⇒ ∃u′.〈vp〉bdd (u′) = u.

Therefore, any concrete input vector satisfying p will be covered by a
symbolic simulation of vp.

It can be nontrivial to produce “by hand” a BDD p that correctly rep-
resents a particular subset of the input space. Instead, this is handled by



1 Use of Formal Verification at Centaur Technology 19

the GL symbolic execution framework. The user defines an ACL2 function
that takes an input vector and determines whether or not that input vector
is in a particular desired subset; GL then symbolically executes this func-
tion on (unparametrized) symbolic inputs, yielding a symbolic Boolean value
(represented as a BDD) that exactly represents the accepted subset of the
inputs.

1.4.4 AIG-to-BDD translation

In the symbolic simulation process for the fadd unit, we obtain AIGs rep-
resenting the outputs as a function of the primary inputs and subsequently
assign parametrized input BDDs to each primary input, computing BDDs
representing the function composition of the AIG with the input BDDs. A
straightforward (but inefficient) method to obtain this composition is an al-
gorithm that recursively computes the BDD corresponding to each AIG node:
at a primary input, look up the assigned BDD; at an AND node, compute the
BDD AND of the BDDs corresponding to the child nodes; at a NOT node,
compute the BDD NOT of the BDD corresponding to the negated node.
This method proves to be impractical for our purpose; we describe here the
algorithm AIG2BDD that we use instead.

To improve the efficiency of the straightforward recursive algorithm, one
necessary modification is to memoize it so as to traverse the AIG as a DAG
(without examining the same node twice) rather than as a tree: due to mul-
tiple fanouts in the hardware model, most AIGs produced would take time
exponential in the logic depth if traversed as a tree. The second important
improvement is to attempt to avoid computing the full BDD translation of
nodes that are not relevant to the primary outputs. For example, if there is
a multiplexer present in the circuit and its selector is set to 1 for all settings
of the inputs possible under the current parametrization, then the value of
the unselected input is irrelevant unless it has another fanout that is rele-
vant. In AIGs, such irrelevant branches appear as fanins to ANDs in which
the other fanin is unconditionally false. More generally, an AND of two child
AIGs a and b can be reduced to a if it can be shown that a ⇒ b (though
the most common occurrence of this is when a is unconditionally false.) The
AIG2BDD algorithm applies in iterative stages two methods that can each de-
tect certain of these situations without fully translating b to a BDD. In both
methods, we calculate exact BDD translations for nodes, beginning at the
leaves and moving towards the root, until some node’s translation exceeds a
BDD size limit. We replace the over-sized BDD with a new representation
that loses some information but allows the computation to continue while
avoiding blowup. When the primary outputs are computed, we check to see
whether or not they are exact BDD translations. If so, we are done; if not, we
increase the size limit and try again. During each iteration of the translation,
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we check each AND node for an irrelevant branch; if a branch is irrelevant it
is removed from the AIG so that it will be ignored in subsequent iterations.
We use the weaker of the two methods first with small size limits, then switch
to the stronger method at a larger size limit.

In the weaker method, the translated value of each AIG node is two BDDs
that are upper and lower bounds for its exact BDD translation, in the sense
that the lower-bound BDD implies the exact BDD and the exact BDD implies
the upper-bound BDD. If the upper and lower bound BDDs for a node are
equal, then they both represent the exact BDD translation for the node.
When a BDD larger than the size limit is produced, it is thrown away and
the constant-true and constant-false BDDs are instead used for its upper
and lower bounds. If an AND node a ∧ b is encountered for which the upper
bound for a implies the lower bound for b, then we have a ⇒ b; therefore we
may replace the AND node with a. Thus using the weak method we can, for
example, replace an AIG representing a ∧ (a ∨ b) with a whenever the BDD
translation of a is known exactly, without computing the exact translation
for b.

In the stronger method, instead of approximating BDDs by an upper
and lower bound, fresh BDD variables are introduced to replace over-sized
BDDs. (We necessarily take care that these variables are not reused.) The
BDD associated with a node is its exact translation if it references only the
variables used in the primary input assignments. This catches certain ad-
ditional pruning opportunities that the weaker method might miss, such as
b 6= (a 6= b) → a.

These two AIG-to-BDD translation methods, as well as the combined
method AIG2BDD that uses both in stages, have been proven in ACL2 to
be equivalent, when they produce an exact result, to the naive AIG-to-BDD
translation algorithm described above.

When symbolically simulating the fadd unit, using input parametrization
in conjunction with the AIG2BDD procedure works around the problem that
BDD variable orderings that are efficient for one execution path are inefficient
for another. Input parametrization allows cases where one execution path is
selected to be analyzed separately from cases where others are used. How-
ever, a naive method of building BDDs from the hardware model might still
construct the BDDs of the intermediate signals produced by multiple paths,
leading to blowups. The AIG2BDD procedure ensures that unused paths do
not cause a blowup.

1.4.5 GL Symbolic Execution Framework

The GL framework is designed to allow proof by symbolic execution within
ACL2, particularly targeted at hardware verification. A typical theorem to be
proven by GL consists of some hypotheses which restrict our consideration
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to a finite (but often large) set of input vectors, and a conclusion which
states some desired property that should hold on every input vector within
this set. For example, to prove the correctness of a 16-bit adder circuit, we
could hypothesize that inputs x and y are both 16-bit natural numbers, and
conclude that when x and y are given as inputs to the circuit, the result
produced is x+y. To prove this, the user specifies what shape of input objects
should be used for symbolic execution (in this case, 16-bit natural numbers.)
This shape specification also gives the BDD ordering for the bits of x and
y. From the shape specification, GL constructs symbolic objects representing
x and y. It then symbolically executes the conclusion. Ideally, the result of
this symbolic execution will be a symbolic object that can syntactically be
determined to always represent true. If not, GL will extract counterexamples
from the resulting symbolic object, giving concrete values of x and y that
falsify the conjecture. When the symbolic execution produces a true result,
the final step in proving this theorem is to show that the symbolic objects used
as inputs to the simulation cover the finite set of concrete inputs recognized
by the hypothesis. In this example, 16-bit symbolic natural numbers suffice
to cover the input space provided all the bits are free, independent variables;
smaller symbolic naturals would not be adequate.

Symbolic objects are structures that describe functions over Booleans. De-
pending on the shape of such objects, they may take as their values any
object in the ACL2 universe. For example, we represent symbolic integers
as the pairing of a tag, which distinguishes such an object from other sym-
bolic types such as Booleans and ordered pairs, and a list of BDDs which
represent the two’s-complement digits of the integer. We define an evaluator
function for symbolic objects, which gives the concrete value represented by
an object under an assignment of Booleans to each variable. For the integer
example, the evaluator recognizes the tag and evaluates each BDD in the rep-
resentation under the given assignment. Then it produces the integer whose
two’s-complement representation matches the resulting list of bits.

To perform a symbolic execution, we employ two methods. We may create
a symbolic counterpart fsym for a user-specified function f . fsym is an exe-
cutable ACL2 function that operates on symbolic objects in the same way
as f operates on concrete objects. It is defined by examining the definition
of f , creating symbolic counterparts recursively for all its subfunctions, and
nesting them in the same manner as in the definition. Alternatively, we may
symbolically interpret an ACL2 term under an assignment of symbolic ob-
jects to that term’s free variables. In this case, we walk over the given term.
At each function call, we either call that function’s symbolic counterpart if it
exists, or else look up the function’s definition and recursively symbolically
interpret it under an assignment that pairs its formals with the corresponding
symbolic values produced by the given actual parameters.

In both methods of symbolic execution, it is necessary for any ACL2 prim-
itives to have predefined symbolic counterparts, since they do not have def-
initions. We have defined many of these functions manually and proven the
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correctness of their symbolic counterparts. For example, the symbolic coun-
terpart of + is defined such that on symbolic integers, it performs a BDD-level
ripple-carry algorithm, producing a new symbolic integer that provably al-
ways evaluates to the sum of the evaluations of the inputs. We have also
manually defined symbolic counterparts for certain functions for which sym-
bolic interpretation of the ACL2 definitions would be inefficient. For example,
the bit-wise negation function lognot is defined as lognot(x) = (−x) − 1, but
for symbolic execution it is more efficient to perform the bit-wise negation
directly by negating the BDDs in the symbolic integer representation; in fact,
we define the negation operator in terms of lognot, rather than the reverse.

The correctness condition for a symbolic counterpart fsym states a corre-
spondence between the operation of fsym on symbolic objects and the op-
eration of f on concrete objects. Namely, the evaluation of the (symbolic)
result of fsym on some symbolic inputs is the same as the (concrete) result
of running f on the evaluations of those inputs:

ev (fsym (s) , a) = f (ev (s, a))

The following diagram illustrates the correspondence:

Symbolic Inputs Symbolic Results

Concrete Inputs Concrete Results

-
fsym

?

ev

?

ev

-
f

Each primitive symbolic counterpart we have defined is proven (using stan-
dard ACL2 proof methodology) to provide this correctness condition. The
correctness of symbolic counterparts of functions defined in terms of these
primitives follows from this; the correctness proofs are automated in the rou-
tine that creates symbolic counterparts. The symbolic interpreter is also itself
verified; its correctness condition is similar. Suppose we symbolically inter-
pret a term x with a binding of its variables vi to symbolic objects si, yielding
a symbolic result. We have proven that the evaluation of this result under
assignment a equals the result of running the term x with its variables vi

each bound to ev(si, a).
These correctness conditions allow theorems to be proven using symbolic

execution. Consider our previous example of the 16-bit adder. Suppose we
symbolically execute the conclusion of our theorem on symbolic inputs sx, sy

and the result is an object that evaluates to true under every variable assign-
ment:

∀a . ev (concsym (sx, sy) , a) .

By the symbolic execution correctness condition, this commutes to:

∀a . conc (ev (sx, a) , ev (sy, a)) .
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That is, the conclusion holds of any pair of values x and y such that sx and
sy evaluate to that pair under some assignment. The coverage side condition
then requires us to show that sx and sy are general enough to cover any pair
that satisfies the theorem’s hypothesis. Once this is proven, the proof of the
theorem (hypotheses imply conclusion) is complete.

1.5 Verification Results and Observations

We have used our ACL2-based verification methodology to prove the correct-
ness of several instructions in Centaur’s execution cluster, including packed
floating-point addition/subtractions and comparisons, format conversions,
logical operations, shuffles, and integer and packed-integer multiplication.
We have also verified the one-cycle invariant for the divider and proven the
correctness of several microcode routines.

Our floating-point addition verification was performed using a machine
with four Intel Xeon X7350 processors running at 2.93 GHz with 128 GB of
system memory. However, each of our verification runs is a single-threaded
procedure, and we limit our memory usage to 35GB for each process so that
we can run single, double, and extended-precision verifications concurrently
on this machine without swapping. The symbolic simulations run in 8 min-
utes 40 seconds for single precision, 36 minutes for double precision, and 48
minutes for extended precision. Proof scripts required to complete the three
theorems take an additional 10 minutes of real time when using multiple pro-
cessors, totalling 25 minutes of CPU time. The process of reading the Verilog
design into ACL2, which is done as part of a process that additionally reads
in a number of other units, takes about 17 minutes. In total it takes about
75 minutes of real time (125 minutes of CPU time) to reread the design from
Verilog sources and complete verifications of all three instructions.

We found two bugs with our verification process, which began after the
floating-point addition instructions had been thoroughly checked using a
testing-based methodology. The first bug was a timing anomaly affecting
SSE addition instructions, which we found during our initial investigation of
the media unit. Later, a bug in the extended precision instruction was de-
tected by symbolic simulation. This bug affected a total of four pairs of input
operands out of the 2160 possible, producing a denormal result of twice the
correct magnitude. Because of the small number of inputs affected, it is un-
likely that random testing would have encountered the bug; directed testing
had also not detected it. Both bugs have been fixed in the current design.

Working in an industrial environment forced us to be able to respond to
design changes quickly. Every night, we run our Verilog translator on the
entire 570,000 lines of Verilog that comprise the Centaur CN and produce
output for all of the Verilog that we can translate. We build a new copy of
ACL2 with our EMOD representation of the design already included so when
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we sit down in the morning, we are ready to work with the current version
of the design. Also, each night, we re-run many of the verifications that have
been done previously to make sure that recent changes are safe. Each week,
we attempt to re-run our entire regression suite of previously proven results.

Our major challenges involved getting our toolsuite to be sufficiently ro-
bust, getting the specification correct, dealing with the complicated clocking
and power-saving schemes employed, and creating a suitable circuit input en-
vironment. It is difficult for us to provide a meaningful labor estimate for this
verification because we were developing the translator, flow, our tools, our
understanding of floating-point arithmetic, and our specification style simul-
taneously. Now, we could likely check another IEEE-compatible floating-point
design in the time it would take us to understand the clocking and input re-
quirements. Centaur will certainly be using this methodology in the future; it
is much faster, cheaper, and more thorough than non-exhaustive simulation.
Although our verification approach is currently dependent on BDDs, we have
considered what would be required to have an AIG-and-SAT flow.

The improvements in ACL2 that permitted this verification will be in-
cluded in future ACL2 releases. The specifics of Centaur’s two-cycle, floating-
point design are considered proprietary. We plan to publish our ACL2-checked
proof that our integer-level specification is equal to our IEEE floating-point
specification; this level of proof is similar to work by Harrison [9].

1.6 Related Work

Several groups have completed floating-point addition and other related ver-
ifications. Notably, Intel has largely supplanted testing-based validation of
the execution unit, instead using full formal verification based on symbolic
trajectory evaluation in the Forte/reFLect system [17]. Also, IBM has inte-
grated formal verification based on model-checking and equivalence checking
into their mainstream verification flow [3]. Our formal verification has only
covered a small fraction of the instructions that run on Centaur’s execution
unit; we hope to expand this coverage in the future. However, we differ from
previous verifications in that we obtained our result using verified automated
methods within a general-purpose theorem prover, and in that we base our
verification on a formally defined HDL operating on a data representation
mechanically translated from the RTL design.

An AMD floating-point addition design was verified using ACL2. It was
proven to comply with the primary requirement of the IEEE 754 floating-
point addition specification, namely that the result of the addition operation
must equal the result obtained by performing the addition at infinite precision
and subsequently rounding to the required precision [19]. The design was
represented in ACL2 by mechanically translating the RTL design into ACL2
functions. A top-level function representing the full addition unit was proven
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to always compute a result satisfying the specification. This theorem was
proved in ACL2 by the usual method of mechanical theorem proving, wherein
numerous human-crafted lemmas are proven until they suffice to prove the
final theorem. A drawback to this method is that even small changes to the
RTL design may require the proof script to be updated. We avoid this pitfall
by using a symbolic simulation-based methodology. Our method also differs
in that we use a deep embedding scheme, translating the RTL design to be
verified into a data object in an HDL rather than a set of special-purpose
functions.

We described our floating-point addition verification previously [12]. Among
bit-level symbolic simulation-based floating-point addition verifications, many
have used a similar case-splitting and BDD parametrization scheme as ours
[2,15,20,21]. The symbolic simulation frameworks used in all of these verifica-
tions, including the symbolic trajectory evaluation implementation in Intel’s
Forte prover, are themselves unverified programs. Similarly, the floating-point
verification described in [8] uses the SMV model checker and a separate ar-
gument that its case-split provides full coverage. To obtain more confidence
in our results, we construct our symbolic simulation mechanisms within the
theorem prover and prove that they yield sound results. Combining tool verifi-
cations with the results of our symbolic simulations yields a theorem showing
that the instruction implementation equals its specification.

1.7 Conclusion

In the verification methodology used at Centaur, we use a combination of
symbolic simulation and conventional theorem proving to verify equivalences
between hardware models and specifications written as ACL2 functions. Be-
cause our toolflow consists, to a large extent, of programs that have been
verified by the ACL2 theorem prover, we are able to obtain ACL2 theorems
reflecting our verification results even though the proofs are done in large
part through symbolic simulation.

We model the design using a deep embedding in the EMOD formal HDL,
which we obtain by automatic translation of the Verilog RTL design. We run
a new translation nightly so as to keep current on the design effort, because
we primarily use “black box” verification methods on the design. We rarely
need to update proof scripts in response to design changes.

Our verification efforts have yielded correctness proofs for several instruc-
tions including floating-point addition, subtraction, and integer multiplica-
tion, conversions between integer and float formats, and comparisons. These
proof efforts resulted in the discovery of two flaws in floating-point addition
instructions that had escaped extensive simulation; these flaws have been
corrected in Centaur’s current design.
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