
Memories: Array-like Records for ACL2

Jared Davis
Department of Computer Sciences
The University of Texas at Austin

jared@cs.utexas.edu

ABSTRACT
We have written a new records library for modelling fixed-
size arrays and linear memories. Our implementation pro-
vides fixnum-optimized O(log2 n) reads and writes from ad-
dresses 0, 1, . . . , n− 1. Space is not allocated until locations
are used, so large address spaces can be represented. We do
not use single-threaded objects or ACL2 arrays, which frees
the user from syntactic restrictions and slow-array warnings.
Finally, we can prove the same hypothesis-free rewrite rules
found in misc/records for efficient rewriting during theo-
rem proving.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—correctness proofs, formal methods; E.1 [Data]:
Data Structures—arrays, records; B.3.4 [Memory Struc-
tures]: Reliability, Testing, and Fault-Tolerance

General Terms
Verification, Performance

Keywords
ACL2, arrays, fixnum optimization, linear address spaces,
mbe, records

1. BACKGROUND
A record is a collection of named values which can be ac-
cessed and updated. In ACL2, records might be represented
in many ways. If there are a fixed set of keys, custom cons

structures or position-based lists might be appropriate. For
more general records, alists or the misc/records book [3]
can be used.

The misc/records book introduces two functions:

• (g a r) retrieves the value of field a in record r, and

• (s a v r) copies record r, changing the value of field
a to v.

These functions are novel in that every ACL2 object can be
interpreted as if it were a record, any object can be used as
a key, and any object can be used as a value. In particular,
the following are theorems:

1. (equal (g a (s a v r))

v)

2. (implies (not (equal a1 a2))

(equal (g a1 (s a2 v r))

(g a1 r)))

3. (equal (s a (g a r) r)

r)

4. (equal (s a v1 (s a v2 r))

(s a v1 r))

5. (implies (not (equal a1 a2))

(equal (s a1 v1 (s a2 v2 r))

(s a2 v2 (s a1 v1 r))))

These high quality rules make records attractive for reason-
ing about linear address spaces: records where the names are
0, 1, . . . , n−1. Other approaches, such as indexing into lists,
or using alists, single threaded objects, and ACL2 arrays do
not facilitate these hypothesis-free rules and can therefore be
more cumbersome to reason about [3]. It should be no sur-
prise that the Rockwell Challenge [2] suggests using records
as a memory representation, and that records are used in
the solutions proposed by Liu [4] and Moore [6].

Ease of reasoning is not enough. The ACL2 user would
also like to efficiently simulate his or her model, particu-
larly when studying a microprocessor [8]. To simulate long-
running programs, the memory model must be implemented
efficiently. Here misc/records may be inadequate, partic-
ularly if the memory to simulate is large: g and s require
two and three linear passes through the memory, respec-
tively. An enhanced book by Rob Sumners, defexec/-

chapter3/records, uses MBE to eliminate these additional
passes. But the number of addresses in a processor’s mem-
ory might be enormously large and memory operations occur
frequently in programs, so linear-time memory operations
may be unacceptably slow.

2. OUR APPROACH
We have developed memories, a new records library which
provides fast access to array-like addresses. To do this, we
combine a misc/record with an efficient tree structure. The
tree is used to hold the values of array addresses, while the
record is used to hold other values. This hybrid approach
has several advantages, which we enumerate below.

The same hypothesis-free rewrite rules of misc/records are
theorems, so reasoning about memories is as straightforward
as reasoning about misc/records. The system is entirely

applicative, so the user faces neither syntactic restrictions
from single threaded objects nor slow array warnings.

Space efficiency is achieved, because the tree starts small
and grows as new locations are written. This permits even
huge arrays with 264 addresses to be simulated on 32–bit
machines, so long as only a reasonable number of those ad-
dresses are used during simulation.

Time efficiency is achieved for array addresses, with loads
and stores taking O(log2 n), where n is size of the array.
These are single pass operations, optimized with MBE and
fixnum arithmetic. Using a 2.8 GHz Pentium 4 test system
with GCL 2.6.7 and ACL2 3.0, we have the following results
reading from and writing to a pre-populated memory.

Memory Size Loads/sec Stores/sec
28 11,000,000 2,200,000
216 2,500,000 625,000
232 785,000 300,000
264 240,000 125,000

There is no meaningful way to compare memories to misc/-

records, where the performance even of the defexec-en-
hanced version is highly dependent upon the order of the
storage operations and the size of the record being manip-
ulated. For example, zeroing the first 216 addresses of an
empty defexec record took less than a second when the lo-
cations were written in descending order, but took 15 min-
utes in ascending order. When the record was pre-populated
instead of being empty, these same operations took 9 and 15
minutes, respectively. On the other hand, memories are not
significantly affected by the order of stores, and it took less
than a second to do each of these operations with memories,
pre-populated or not, even with a size of 264.

3. IMPLEMENTATION: MEMTREES
Our memories are mainly based on a custom tree structure
we call memtrees. Every memtree has some fixed depth
and can be used to store up to 2d elements, addressed by
0, 1, . . . , 2d−1. These trees are not particularly complicated:

• Any ACL2 object, x, is a memtree of depth 0. Such
trees have a single element, whose address is zero, and
whose value is exactly x.

• (a . b) is a memtree of depth d > 0 whenever a, b are
memtrees of depth d − 1. Since a, b each have 2d−1

elements, the resulting tree has 2d elements.

We permit nil to represent a memtree of any depth whose
elements are all nil. This allows us to collapse unused blocks
of memory into a single nil.

We say memtrees m1 and m2 are equivalent if their every ad-
dress has the same value. We would like equivalent memtrees
to be equal, so that no new equivalence relation is needed.
Unfortunately, we can now imagine equivalent trees that
are not equal, for example, nil and (nil . nil) are both
memtrees of depth 1 which are equivalent. To remedy this,
we further require either a or b to be non-nil for (a . b) to
be a memtree. This way, only the most collapsed version of
each tree is acceptable.

(defun _memtree-p (mtree depth)

(cond ((zp depth) t)

((atom mtree) (null mtree))

(t (and (_memtree-p (car mtree) (1- depth))

(_memtree-p (cdr mtree) (1- depth))

(or (car mtree) (cdr mtree))))))

We think of array addresses in their base–2 expansions, i.e.,
as sequences of bits. These bit sequences describe paths
through the tree. Whenever the “next bit” is 0, we follow
the car of the tree, and otherwise we follow the cdr. Since
the car and cdr of nil are nil, no special care needs to be
taken to support loading from collapsed memtrees:

(defun _memtree-load (addr mtree depth)

(if (zp depth)

mtree

(_memtree-load (floor addr 2)

(if (equal (mod addr 2) 0)

(car mtree)

(cdr mtree))

(1- depth))))

Storing is more complicated since we must leave the tree
in canonical form. To handle this, we write two functions:
one which stores nil, and one which stores non-nil values.
Below, we only show the function to store non-nil values,
since the other is so similar:

(defun _memtree-store (addr elem mtree depth)

(if (zp depth)

elem

(let ((quotient (floor addr 2)))

(if (equal (mod addr 2) 0)

(cons (_memtree-store quotient elem

(car mtree)

(1- depth))

(cdr mtree))

(cons (car mtree)

(_memtree-store quotient elem

(cdr mtree)

(1- depth)))))))

To make memtree loading and storing fast, each of these
functions is guarded so that depth is a natural number,
mtree is a memtree of the appropriate depth, and addr is an
acceptable array address (i.e., a natural less than 2depth). We
use MBE to perform “strength reduction”, replacing calls
of (floor addr 2) with (ash addr -1), and calls of (mod
addr 2) with (logand addr 1).

We also take advantage of fixnum arithmetic. We begin by
introducing “fixnum versions” of each function, by guarding
them so that addr and depth must be fixnums. This allows
for our bit operations and our decrementing of depth to be
compiled by GCL into efficient C arithmetic operations, such
as & and >>.

In practice, depth will always be a fixnum. For example,
even an array of size 264 only requires a depth of 64. How-
ever, addr does not enjoy this property, e.g., a 64–bit mem-
ory will result in addresses which are too large to be fixnums
on 32–bit host machines.

To deal with this complication, we add “half-optimized” ver-
sions of each function, wherein we only assume that depth is
a fixnum (i.e., we do not require that addr is also a fixnum).
Here, we change the base case: instead of recurring until
depth is zero, we recur only until depth is small enough
that addr must be a fixnum. At that point, we call our
“fully-optimized” version of the function, allowing us to take
advantage of fixnum arithmetic for both addr and depth in
the final part of the computation. In short, we use bignum
arithmetic only until it is safe to switch to fixnum arithmetic.

All of this work is really just “peephole optimization” that
does nothing to improve upon our algorithmic complexity.
However, the practical benefits are quite significant and lead
to the performance results mentioned earlier.

We wrap these many variants into single load and store

operations which inspect their inputs and then call the ap-
propriately optimized function. These decisions are based
on the sizes of the inputs and, for stores, whether or not the
value to store is nil. These conveniences add minimal over-
head, and shield our users from needing to deal with fixnum
concerns in their guards.

4. IMPLEMENTATION: MEMORIES
We would like to prove the basic “record theorems” about
memtrees. To eliminate some hypotheses, we can redesign
the load and store functions so that they “fix” their argu-
ments as in [1, 5]. We treat bad depths and addresses as
if they were zero, and ill-formed memtrees as if they were
nil. These conveniences add no execution overhead thanks
to guards and MBE.

With these changes, we can almost prove the record the-
orems. However, we need hypotheses to ensure that the
addresses are valid and, for the third theorem, that the
memtree is well-formed. Also, the memtree’s depth param-
eter unaesthetically occurs in each theorem. These are the
same sort of issues that make records so appealing in the
first place!

Most of these deficiencies can be addressed with a new ab-
straction. A memory groups together a memtree with some
other data, including:

• The depth of the memtree (by bundling this alongside
the memtree, we no longer need to consider and man-
age tree depths separately, so load and store need not
take an extra depth parameter),

• An “intended size” of the memory (this can be any
integer with 0 ≤ size ≤ 2depth, and allows us to act as
if our memory sizes need not be powers of two), and

• A regular misc/record (this gives us somewhere to
store values for non-array addresses, freeing us from
address fixing and eliminating address-related hypothe-
ses).

After these changes, we can remove all our hypotheses ex-
cept for the well-formedness of our memory in the third the-
orem. This is a particularly difficult hypothesis to remove.
Fortunately, the same issue was encountered and addressed

in [3], and the solution described there can be successfully
applied here as well.

The basic idea is as follows. We are going to partition the
ACL2 universe into three infinite sets: the memories, the
bad memories, and their overlap, as the following Venn dia-
gram suggests:

objects
_memory−p _bad−memory−p

objectsoverlap

The memory-p objects are the aggregates we have described
above, and include a memtree component, size, depth, and
record. The bad-memory-p objects are all other ACL2 ob-
jects, and also all of the proper memory-p objects with size
and depth 0, whose memtrees are recursively bad-memory-p

objects.

The infinite size of the overlap allows us to create an iso-
morphism between all of the bad-memory-p objects and the
overlap objects.

• to-mem takes any bad-memory-p object, x, and maps
it to a new memory-p object whose size/depth are zero,
record is nil, and memtree is x.

• from-mem takes any overlap object and simply returns
its memtree.

When given inputs that are not bad-memory-ps, to-mem

and from-mem simply act as the identity. Furthermore, the
following are theorems:

• (_memory-p (_to-mem x))

• (equal (_from-mem (_to-mem mem)) mem)

• (implies (_memory-p mem)

(equal (_to-mem (_from-mem mem))

mem))

We now rename our “straightforward” implementations of
load and store to load and store, and create the follow-
ing new wrappers which also perform these various conver-
sions:

• (load addr mem) = (_load addr (_to-mem mem))

• (store addr val mem) =

(_from-mem (_store addr val (_to-mem mem)))

This is all quite similar to the work in [3]. In particular,
to-mem is like acl2->rec, from-mem like rec->acl2, load

and store are like g-aux and s-aux and load and store

are like g and s.

With these definitions in place, we can prove all five record
theorems without hypotheses. As an example, we will now
sketch the proof of property 3. Begin with (store addr

(load addr mem) mem). By the definitions of store and
load, this is the same as:

(from-mem (store addr

(load addr (to-mem mem)| {z }
a memory-p object

)

(to-mem mem)| {z }
a memory-p object

))

This call of store now has the form (store a (load a

m) m), and we can see that m is a memory-p object. Since m

is a memory-p object, it is well-formed from the perspective
of store, and the entire store reduces to m. This results
in the term (from-mem (to-mem mem)), which further re-
duces to mem, which is what we wanted to show. The other
proofs are similar.

Our last remaining task is to make these operations efficient.
We define the “good memories”, recognized by memory-p,
as those memories whose size and depth are nonzero. For
any memory-p object, to-mem and from-mem are the iden-
tity. Then, by guarding load and store to take only valid
memory-p objects as inputs, we can use MBE to remove these
conversions entirely during execution.

5. CONCLUSIONS
Our library is entirely applicative, supports the same hyp-
othesis-free rewrite rules as misc/records, can be used to
represent large memories, and allows for fast simulation.
It should be ideal for modelling large processor memories,
where both simulation speed and reasoning ability are im-
portant.

We were somewhat fortunate that our memtrees have a
canonical form. Other tree structures such as misc/symbol-
btrees probably cannot be combined with records in this
way without sacrificing equal-based reasoning.

The library is freely available under the terms of the GNU
General Public License, and will be distributed with the
next version of ACL2.

6. AFTERWORD
The virtues of hypothesis-free, equal-based rewrite rules
have been promoted in previous workshop papers. To sup-
port such rules, a total order was added to ACL2 [7], lead-
ing to the misc/records library and also to my ordered sets
library [1]. The memories presented here follow this tra-
dition. But I am not entirely convinced that equal-based
hypothesis-free rewriting is such a good idea.

Consider misc/records. A clever trick was required to de-
velop definitions which would support these rewrite rules,
and it is tricky to extend the library without understanding
how this trick works. An alist-equiv based library using
assoc and acons is far simpler to write, and can more eas-
ily be extended to support operations such as domain and

range.

The main reason to favor hypothesis-free rewriting is that
hypotheses can prevent rules from firing. This can slow
down a proof attempt or, worse, require a user to inves-
tigate why a term is not being rewritten. I have found that
the combination of force and backchain limits is usually
sufficient to address these problems. And, compared with
discovering a deep trick such as this invertible mapping, this
approaches seems much simpler.

A downside of equivalence based rewriting is the need to
prove congruence rules. In many of the most typical cases,
the desired rules are easy to identify and are not difficult
to prove. But, we will admit that it can be a burden to
deal with aggregates when their components make use of
different equivalence relations.

For example, suppose we use unordered lists to represent sets
and alists to represent mappings. Then, it may take some
effort to write down what we mean by equivalent “sets of
maps,” and the resulting operation may not be particularly
efficient. On the other hand, using ordered sets and records,
the same operation is just equal.

7. REFERENCES
[1] Jared Davis. Finite set theory based on fully ordered

lists. In Fifth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2-2004),
November 2004.

[2] David Greve and Matt Wilding. Dynamic
datastructures in ACL2: A challenge, November 2002.

[3] Matt Kaufmann and Rob Sumners. Efficient rewriting
of operations on finite structures in ACL2. In Third
International Workshop on the ACL2 Theorem Prover
and its Applications (ACL2-2002), April 2002.

[4] Hanbing Liu. A solution to the Rockwell challenge. In
Fourth International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2003), July 2003.

[5] J S. Moore. Finite set theory in ACL2. In 14th
International Conference on Theorem Proving in
Higher Order Logics, September 2000.

[6] J S. Moore. Memory taggings and dynamic data
structures. In Fourth International Workshop on the
ACL2 Theorem Prover and Its Applications
(ACL2-2003), July 2003.

[7] Panagiotis Manolios and Matt Kaufmann. Adding a
total order to ACL2. In Third International Workshop
on the ACL2 Theorem Prover and its Applications
(ACL2-2002), April 2002.

[8] Matthew Wilding, David Greve, and David Hardin.
Efficient simulation of formal processor models. Formal
Methods in System Design, 18(3), May 2001.

